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 Dynamical properties of the DNLS

A brief account of some earlier works related to NTS 

Magnus Johansson
Department of Physics, Chemistry and Biology, Linköping University, Sweden

Glasgow, October 23, 2014

Disclaimer: This talk is a minor update of talks from 2001-2006, many contributions 

from the last decade are certainly missing! Hopefully provided by other speakers!

Main focus of this talk:

For which kinds of initial spatially extended states can we expect spontaneous 

formation of persistent localized modes in a Hamiltonian lattice after long times?

Answer connected to statistical-mechanics description of the model and “negative-

temperature-like” behaviour (at least transient).
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The Discrete Nonlinear Schrödinger (DNLS) equation: 

(1D, general power-law nonlinearity)

 

Assume  > 0 and C > 0.  (C < 0            (-1)m               )

 = 1: cubic DNLS with many well-known applications, e.g.:

● Describes generically small-amplitude dynamics of weakly coupled anharmonic 
oscillators (“Klein-Gordon lattice”)

● Nonlinear optics: Discrete spatial solitons in waveguide arrays

● Bose-Einstein condensates (BECs) in optical lattices

Two motivations for studying   1: 

● There is an excitation threshold for creation of localized excitations when D  2.
(Flach et al, PRL 78, 1207 (1997))

● Modelling BECs in optical lattices, 0 <  < 1 may account for dimensionality of the 
condensates in each well. 

(Smerzi/Trombettoni, Chaos 13, 766 (2003); Anker et al., PRL 94, 020403 (2005))
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Some basic properties of the DNLS equation

2 conserved quantities:

● Hamiltonian (energy):

● Excitation number (norm, power, number of particles,...): 

In action-angle variables,   : 

For extended solutions, use intensive quantities:  

● One can prove, that a staggered (q = ) stationary plane wave:

   minimizes h at fixed a: 

   (Global min for    )

Trivial remark: 
The Hamiltonian could equally well be defined with opposite sign, turning the min into a max...
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Few words about DNLS statistics
(expect more from next speaker(s)!)

Treating as particle number in grand canonical ensemble and using equilibrium 

Gibbsian statistical mechanics leads to a division of available (h, a)-space into two parts: 

(Rasmussen et al., PRL 84, 3740 (2000), Johansson/Rasmussen, PRE70, 066610 (2004))

●  'Normal' regime                  : Typical initial conditions                            =1

expected to thermalize with Gibbsian distribution at                        'anomalous'            'normal'

temperature T = 1/ and chemical potential . 

Exponentially small probabilities for large-amplitude excitations.

● 'Anomalous' regime      : 
Formation of localized structures!

Transition line can be calculated exactly as 
infinite-temperature line  = 0: 

Connection between 'anomalous' regime and negative temperatures: 
In microcanonical ensemble (fixed     ), a localized stationary 'breather' uniquely maximizes      .
Localizes essentially at one site for large    , with (Weinstein, Nonlinearity 12, 673 (1999))

Entropy decrease  Negative T (but not trivial to extend to grand canonical ensemble!) 
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Examples of dynamics in the different regimes

1. Homogeneous travelling waves:          =1, a=0.09 

     q=0:

Modulationally unstable for                       

(e.g. Smerzi/Trombettoni, Chaos 13, 766 (2003)) q=/2

Transition at yields critical amplitude:

Formation of persistent localized modes expected when

and    (Rumpf, PRE 69, 016618 (2004))

Note separation into small-amplitude 'fluctuations' and large-amplitude 'breathers' for small a and q.

Amplitude distributions for 
increasing a: (q = 0,  = 1)

Note change from positive to 
negative curvature when 
entering 'normal' regime!

Rasmussen et al, PRL 84, 3740 (2000)
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More examples of dynamics from specific initial conditions

2. Non-homogeneous standing waves: Time-periodic non-propagating exact solutions, 

periodic or quasiperiodic in space with wave vector Q. (Morgante et al., PRL 85, 550 (2000))

 = 1: Q = 12/55 (Johansson et al., EPJ B 29, 279 (2002)) Q = 68/89

   

Specifically: Simple expression for Q=/2: ('period-doubled states')

 = 1: Solution family coincides with transition line from 'normal' to 'anomalous' regime! 

0 <  < 1: Always in 'anomalous' regime

 > 1: Always in 'normal' regime
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 Numerical integration of unstable Q=/2 standing waves

Large-temperature predictions for equilibrium amplitude distribution:

               :     

  : 

      Breathers? 

Note that the approach to a (possible) equilibrium

state is extremely slow in the 'anomalous' regime          

(Johansson/Rasmussen, PRE 70, 066610 (2004))

 = 2/3

 = 3

 = 1

 = 2/3
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Generalizations: higher D

Ex. Plane wave in 2D: 

q = 0,  = 1: 

a = 7 (in 'anomalous regime'): 

Again discontinuous distribution after 'long enough' times!

Low­amplitude part: phonon bath at T = 

High­amplitude part: breathers with increasing amplitude

Ex. Constant-amplitude state in 3D: Critical amplitude 

(Johansson/Rasmussen, PRE 70, 066610 (2004))

a = 9

a =12

a = 15
a = 9
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Few words about breather-phonon interactions (1D,  = 1)

Observation: Pinned breathers seemingly grow only to a certain limit size! Why...?

Possible answer from analysis of fundamental inelastic breather-phonon scattering
processes to 2nd order in phonon amplitude.

(Breathers are linearly stable, and 1st order scattering is always elastic)

Main results: (Johansson/Aubry, PRE 61, 5864 (2000), Johansson, PRE 63, 037601 (2001))

(i) Interaction with single phonon mode may only yield breather 
growth, and only for wavevectors q < q

c
 when also second-harmonic

is inside phonon band!

(ii) Breather decay requires simultaneous excitation of two phonon
modes, with frequency difference inside phonon band.

Interpretation: Scattering towards higher frequencies decreases 
the energy      in phonon part, and surplus is absorbed by breather 
growth (correspondingly decay for lower frequencies)

Important remark: All 2nd order inelastic processes vanish for large breathers (q
c
0) 

 Only higher-order interactions may affect breathers larger than a threshold, 

corresponding to a peak power                   .       
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More generalizations: inter-site nonlinearities

(several motivations for 'peculiar' inter-site part: 'rotating-wave' approximation for FPU-chain, optical waveguides 
embedded in nonlinear medium, correlated tunneling of bosons,...) 
(Johansson, Physica D 216, 62 (2006))

Parameter Q, 0  Q  1/2, measures relative strength of intersite anharmonicity.

Only minor changes in phase diagram: for =0  line

Critical amplitude for plane wave:  

Major change in the resulting dynamics in the 'anomalous' 
regime for larger Q: (Q = 0.5 here)

Single remaining, randomly moving large-amplitude breather!

Inter-site nonlinearities decrease 'Peierls-Nabarro' barrier for movement!
 

Minimum energy needed for translation 
one lattice-site. (J.C. Eilbeck, 1986)
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Inter-site nonlinearities, continued

Effect: Evolution towards equilibrium in 'anomalous' regime much faster!

 0:

no phase-correlations between sites in infinite-temperature phonon bath.

Amplitude distribution separates: T =  prediction; 2 neighboring breather sites
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...and one more generalization: Binary modulated on-site potential

Persistent breather created in 'anomalous' regime

Metastable 'gap solitons' created in 'normal' regime

(Kroon et al. Physica D 239, 269 (2010))

T =  line 
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...and just mentioning few other generalizations I am aware of...

- Brunhuber et al., PRE 73, 056610 (2006): Long-range dispersive interactions
- Samuelsen et al., PRE 87, 049901 (2013): Saturable nonlinearity;
- Derevyanko, PRA 88, 033851 (2013): Two coupled fields with four-wave mixing
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• The statistical mechanics description yields explicit necessary conditions
for formation of persistent localized modes, in terms of average values of
the two conserved quantities Hamiltonian and Norm.

• The approach approximately describes situations with non-conserved but
slowly varying quantities, e.g. explains formation of long-lived breathers
from thermal equilibrium in weakly coupled Klein-Gordon chains.

• In contrast to the condition for existence of an energy threshold for
creation of a single breather, σ and D work in opposite directions for the
statistical localization transition. The energy threshold affects the
approach to equilibrium, not the nature of the equilibrium state.

• For pure on-site nonlinearities the created localized excitations are
typically pinned to particular lattice sites, while for significant inter-site
nonlinearities they become mobile and merge into one.

Concluding remarks and perspectives (as of 2004-2006!): 
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• Can localization transition be experimentally observed with BEC’s in
optical lattices, or with optical waveguide arrays??

•Can the hypothesis of separation of phase space in low-amplitude
’fluctuations’ and high-amplitude ’breathers’ in the equilibrium state be
put on more rigorous ground, also for large a?

•What determines the time-scales for approach to equilibrium in
breather-forming regime? Are equilibrium states physically relevant, if
they can only be reached after t   1060...?

Some open(?) issues (as of 2004-2006!): 
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