Dynamical properties of the DNLS

A brief account of some earlier works related to NTS

Magnus Johansson
Department of Physics, Chemistry and Biology, Linkdping University, Sweden

Glasgow, October 23, 2014

Main focus of this talk:
For which kinds of initial spatially extended states can we expect spontaneous

formation of persistent localized modes in a Hamiltonian lattice after long times?

Answer connected to statistical-mechanics description of the model and “negative-

temperature-like” behaviour (at least transient).

Disclaimer: This talk is a minor update of talks from 2001-2006, many contributions

from the last decade are certainly missing! Hopefully provided by other speakers!



The Discrete Nonlinear Schrodinger (DNLS) equation:

(1D, general power-law nonlinearity)

iwm -+ O(merl -+ wm—l) - ‘@Dm‘ngm = 0.

Assumec>0and C>0. (C<0« wma(—l)mwm)

o = 1: cubic DNLS with many well-known applications, e.g.:

» Describes generically small-amplitude dynamics of weakly coupled anharmonic
oscillators (“Klein-Gordon lattice™)

* Nonlinear optics: Discrete spatial solitons in waveguide arrays

« Bose-Einstein condensates (BECs) in optical lattices

Two motivations for studying c # 1:

* There is an excitation threshold for creation of localized excitations when oD > 2.
(Flach et al, PRL 78, 1207 (1997))

* Modelling BECs in optical lattices, 0 < o < 1 may account for dimensionality of the

condensates in each well. 2
(Smerzi/Trombettoni, Chaos 13, 766 (2003); Anker et al., PRL 94, 020403 (2005))



Some basic properties of the DNLS equation

2 conserved quantities:
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e Hamiltonian (energy): H = Em [C[t--‘:rn‘_—"f‘;;+1 + U Umgr) + | g|_|_1 }

« Excitation number (norm, power, number of particles,...): .4 = Zm |?+-'f-'m |2
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For extended solutions, use intensive quantities: /2 =

* One can prove, that a staggered (q = =) stationary plane wave:

(min)
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U = /ae™ "™ minimizes h at fixed a: L™ — —_2Ca 4+ &

_ 1 o-+1
(Global min for o™ = (2C)7 )

Trivial remark:
The Hamiltonian could equally well be defined with opposite sign, turning the min into a max...




Few words about DNLS statistics

(expect more from next speaker(s)!)

Treating .A as particle number in grand canonical ensemble and using equilibrium

Gibbsian statistical mechanics leads to a division of available (h, a)-space into two parts:
(Rasmussen et al., PRL 84, 3740 (2000), Johansson/Rasmussen, PRE70, 066610 (2004))

e 'Normal' regime h < hle); Typical initial conditions
expected to thermalize with Gibbsian distribution at

temperature T = 1/ and chemical potential p.

Exponentially small probabilities for large-amplitude excitations.

« 'Anomalous' regime h > h(¢) :
Formation of localized structures!

Transition line can be calculated exactly as

m - L
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FIG. 1. Parameter space (a, h), where the shaded area is in-
accessible. The thick lines represent the § = = (T = 0) and
B = 0(T = =) lines and thus bound the Gibbsian regime. The
dashed line represents the h = 2a + za® line along which
the reported numerical simulations are performed (pointed by
the svmbols),

infinite-temperature line =0: /» = h'%(a;0) =T (0 4+ 1)a”

Connection between 'anomalous' regime and negative temperatures: |
In microcanonical ensemble (fixed .A), a localized stationary 'breather' uniquely maximizes H.

Localizes essentially at one site for large 4 , with 7 ("ma®) ~ “jrfll

(Weinstein, Nonlinearity 12, 673 (1999))
4

Entropy decrease <> Negative T (but not trivial to extend to grand canonical ensemble!)



Examples of dynamics in the different regimes

1. Homogeneous travelling waves: ), = aetdm ot 6=1.a=0.09
o ! “F :
= h=2Cacosq+ ——. g=0: |
o+ 1
Modulationally unstable for \q\ < ’FT/? 0, 1 o
(e.g. Smerzi/Trombettoni, Chaos 13, 766 (2003)) q=7t/2m
Transition at /, — /,(¢) yields critical amplitude: f
1 e
(e) — | 2(c+1)Ccosq | @ e —— 28
{ I o ]-_'(':r —|_2) _ J— FIG. 1. Mumerical imegration of the DMNLS with 4096 (m:.nlla-

tors. The initial conditions are waves with the amplitnde ¢, =03
and the wave number =0 for (a), (B, and with &= /2 for (c), (d)
(a) amd (c) show the spatiotemporal patiemnms of high-amplitode

Formation of persistent localized modes expected when sses (aek gray) in # smal setor of he chain o he st 200

i steps, (b and {d) show the distnbutiions of ¢ after 2 107
time sleps.

| < 7/2 and a < al9(q:0) (Rumpf, PRE 69, 016618 (2004))

Note separation into small-amplitude 'fluctuations' and Iarge amplitude 'breathers' for small a and g.
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More examples of dynamics from specific initial conditions

2. Non-homogeneous standing waves: Time-periodic non-propagating exact solutions,

periodic or quasiperiodic in space with wave vector Q. (Morgante et al., PRL 85, 550 (2000))

c=1: Q=12n/55 (Johansson et al., EPJ B 29, 279 (2002)) Q= 687:/8?]
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Specifically: Simple expression for Q=n/2: ('period-doubled states')

Yong1 = 0,¢P2n40 = (—1)"v2ae' 207, h= Z7a”t!

o = 1: Solution family coincides with transition line from 'normal’ to 'anomalous' regime!

0 <o < 1: Always in 'anomalous' regime

o > 1: Always in 'normal’ regime



Numerical integration of unstable Q=r/2 standing waves

Large-temperature predictions for equilibrium amplitude distribution:

Y _ [ ‘4J+1
~ 3 |

Ly
!

T < o log p(ﬁ)
T =00t log p(A) ~ —4

Note that the approach to a (possible) equilibrium

state is extremely slow in the 'anomalous’ regime

<2 C‘\":AIHAHHI CDS( ‘i'm_ Q&'m+ l)>

coupling part of h

(Johansson/Rasmussen, PRE 70, 066610 (2004))
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Ex. Plane wave in 2D: (e)

{'I S —

g=00=1: al® =8C
a =7 (in 'anomalous regime'):

Again discontinuous distribution

Generalizations: higher D

2(c+41)C(cos gz +cos qy )

T(o+2)—1

after 'long enough' times!

Low-amplitude part: phonon bath at 7= o

High-amplitude part: breathers with increasing amplitude

Ex. Constant-amplitude state in 3D: Critical amplitude @« = 12C
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Few words about breather-phonon interactions (1D, o =1)

Observation: Pinned breathers seemingly grow only to a certain limit size! Why...?

Possible answer from analysis of fundamental inelastic breather-phonon scattering
processes to 2nd order in phonon amplitude.

To3ze —

T
(b

(Breathers are linearly stable, and 1st order scattering is always elastic) 12126 |

Main results: (Johansson/Aubry, PRE 61, 5864 (2000), Johansson, PRE 63, 037601 (2001)) |

5 322t
[

(i) Interaction with single phonon mode may only yield breather
growth, and only for wavevectors g < g_when also second-harmonic...|
is inside phonon band! TR R e T T T

2.5235

(i) Breather decay requires simultaneous excitation of two phonon
modes, with frequency difference inside phonon band. 25254

E 23253}

Interpretation: Scattering towards higher frequencies decreases
the energy 4 in phonon part, and surplus is absorbed by breather
growth (correspondingly decay for lower frequencies) 2.5251 |

Ju] 1000 2000 3000 4000 S000
time

Important remark: All 2nd order inelastic processes vanish for large breathers (g —0)

2.5252

= Only higher-order interactions may affect breathers larger than a threshold,

corresponding to a peak power |wun|2;—: 5.65.



More generalizations: inter-site nonlinearities

ithn + C(Wnp1 + V1) + [Pn]*n
+Q [21‘” ( ‘.I-‘::?'”‘Fl ‘2 + ‘Tﬁi:ﬂ_l ‘2} + t"‘:.. (L‘TQL—I—I + Lii— 1) + 2 ‘L‘n |2 (ﬁ?ﬂ—l—l + 'I.EI;"n—l)

(several motivations for 'peculiar’ inter-site part: 'rotating-wave' approximation for FPU-chain, optical waveguides
embedded in nonlinear medium, correlated tunneling of bosons,...)
(Johansson, Physica D 216, 62 (2006))

Parameter Q, 0 < Q < 1/2, measures relative strength of intersite anharmonicity.

Only minor changes in phase diagram: h' a: Q) = (2Q + 1)a*for B=0 line

Critical amplitude for plane wave: a(®) = A€ cosg -tQ:—

— 142Q(1—2cos?2 g—4cosq)’ 7 108700

+

Major change in the resulting dynamics in the 'anomalous’ \ P
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Inter-site nonlinearities decrease 'Peierls-Nabarro' barrier for movement!

jagl? t
._/L ﬂ Minimum energy needed for translation
one lattice-site. (J.C. Eilbeck, 1986) 10
n= (2) Fig. 4. (b)



Inter-site nonlinearities, continued

Effect: Evolution towards equilibrium in 'anomalous' regime much faster!

<2 C\":A:;r;rAf;rHl CDS( ‘;f)m_ ‘;bm+lj> — 0:
no phase-correlations between sites in infinite-temperature phonon bath.
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Amplitude distribution separates: T = « prediction; 2 neighboring breather sites
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Persistent breather created in 'anomalous' regime

Metastable 'gap solitons' created in 'normal’ regime

12

(Kroon et al. Physica D 239, 269 (2010))

site



...and just mentioning few other generalizations | am aware of...

- Brunhuber et al., PRE 73, 056610 (2006): Long-range dispersive interactions
- Samuelsen et al., PRE 87, 049901 (2013): Saturable nonlinearity;

- Derevyanko, PRA 88, 033851 (2013): Two coupled fields with four-wave mixing
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Concluding remarks and perspectives (as of 2004-2006!):

* The statistical mechanics description yields explicit necessary conditions
for formation of persistent localized modes, in terms of average values of
the two conserved quantities Hamiltonian and Norm.

 The approach approximately describes situations with non-conserved but
slowly varying quantities, e.g. explains formation of long-lived breathers
from thermal equilibrium in weakly coupled Klein-Gordon chains.

* In contrast to the condition for existence of an energy threshold for
creation of a single breather, o and D work in opposite directions for the
statistical localization transition. The energy threshold affects the
approach to equilibrium, not the nature of the equilibrium state.

e For pure on-site nonlinearities the created localized excitations are
typically pinned to particular lattice sites, while for significant inter-site
nonlinearities they become mobile and merge into one.

14



Some open(?) issues (as of 2004-2006!):

e Can localization transition be experimentally observed with BEC’'s in
optical lattices, or with optical waveguide arrays??

*Can the hypothesis of separation of phase space in low-amplitude
'fluctuations’ and high-amplitude 'breathers’ in the equilibrium state be
put on more rigorous ground, also for large a?

*What determines the time-scales for approach to equilibrium in
breather-forming regime? Are equilibrium states physically relevant, if

they can only be reached aftert ~ 10°...?

15
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