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Figure 3 Analysis of the Bose–Einstein condensate. a, The axial distribution of
the condensate shown in Fig. 2b, integrated in the radial direction. The experimental
data (blue columns, 900 nm bin size) are compared with a bimodal distribution (red
line) calculated in the semi-ideal model for a total atom number of N= 115,000 and
a temperature of T= 80 nK. The condensate fraction is 80%. The inset shows
absorption images of the condensate after 15 ms time of flight with and without
exposure to the electron beam. The number of atoms after exposure is reduced by
7% on average. b, The distribution in the radial direction (300 nm bin size). In the
inset we have plotted the radial density of the thermal component in the trap centre
as calculated from the model. The minimum is due to the repulsion from the
condensate fraction. c, The estimated density distribution in the axial direction for
the single-shot image in Fig. 2a (blue line). The data (columns) have been binned
over 3µm. The blue shaded area indicates the uncertainty of the estimated
distribution. For comparison, the red dashed line shows the solution of the
theoretical model (the same as in a).

depth of the optical potential and all scattered particles can escape
from the trap. Essentially, no energy is deposited in the cloud, as
we observe an additional heating of merely 5 nK after exposure to
the electron beam. Thus, the perturbation caused by the detection
process is very small. If not, the scanning speed could be made
larger than the speed of sound in the condensate, providing an
eVectively unperturbed cloud during the whole imaging sequence.
According to equation (1), high imaging speed is associated with a
reduced signal and a convenient setting of the imaging parameters
has to be chosen for each application. Most detected ions are
singly charged (80%), but we also find higher charged states of
up to Rb7+ resulting from inner-shell ionization. Only one out of
50 detected events is due to background gas ionization or dark
counts, which results in a high signal-to-noise ratio, as shown by
Fig. 2. Taking into account a detector eYciency of 30%, the total
eYciency for our detection scheme is currently limited to 12%. It
could be increased by a more eYcient ion detector and additional
photoionization of inelastically scattered atoms. We estimate that
a total detection eYciency of more than 50% could be feasible.
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Figure 4 Images of a Bose–Einstein condensate loaded in a one-dimensional

optical lattice. a–c, The lattice, which is created by two laser beams (wavelength
l = 850 nm) intersecting at 90� , has a period of l= 600 nm. Each image is the sum
of 50 individual images. The pixel size is 200 nm⇥200 nm (a), 75 nm⇥75 nm (b)
and 25 nm⇥25 nm (c). The lattice depth was 20 recoil energies Er

(Er =⇡2 h̄2
/ (2ml 2 ), with m being the rubidium mass) and the FWHM diameter of

the electron beam was 95 nm.

The small perturbation of the system in combination with a high
detection eYciency could make it possible to take several images of
the same condensate, thus allowing for a direct observation of the
dynamical evolution of an individual system.

ONE-DIMENSIONAL OPTICAL LATTICE

To characterize the resolution of our imaging technique, we have
loaded the condensate in a one-dimensional optical lattice with
600 nm lattice period. A sequence of electron microscope images
with increasing resolution is shown in Fig. 4a–c. The periodic
structure of the potential is clearly resolved with high contrast.
The atomic density in each lattice site is radially symmetric, with
a diameter of 6 µm and a thickness of 300 nm, and documents the
large depth of focus of the electron optical imaging system.

One of the most intriguing properties of a Bose–Einstein
condensate is its macroscopic phase coherence. In a periodic
potential the phase coherence can be easily verified by interference
experiments. An absorption image of the condensate after a ballistic
expansion of 15 ms is shown in the inset of Fig. 5a. The image was
taken after illumination with the electron beam, and the appearance
of the characteristic diVraction peaks demonstrates that the partial
measurement of a subset of atoms does not destroy the coherence
of the remaining system. Furthermore, it is an example for a
complementary measurement in position and momentum space
on a single many-body quantum system. For a quantitative analysis
we compare the integrated line scans with the Bloch wavefunction
that describes the ground state of non-interacting atoms in the
lattice potential (Fig. 5a,b). The periodic structure and the shape
of the individual on-site wave function are well reproduced for
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Figure 5 Ground state of a Bose–Einstein condensate in a one-dimensional

optical lattice. a,b, The graphs show integrated line scans for a lattice depth of
s= 10 (a) and s= 20 (b), where s measures the lattice depth in units of the recoil
energy. The blue columns are the experimental data, which are compared with a
theoretical model (black line) based on the ground state in the lattice potential (red
dashed line) convolved with a Gaussian electron-beam profile with 95 nm FWHM
diameter. An absorption image after 15 ms time of flight (inset in a) reveals that the
phase coherence of the condensate is preserved after exposure to the
electron beam.

both data sets. Together with the observed interference pattern
both the density distribution and the relative quantum-mechanical
phase are determined, and thus the Bloch wavefunction is fully
characterized. Eventually, we conclude from the good agreement
that our imaging technique achieves a spatial resolution of better
than 150 nm (see the Methods section).

SINGLE-SITE ADDRESSABILITY

Ultracold quantum gases in optical lattices21–23 have triggered a lot
of interest owing to the close connection to solid-state systems and
the perspective of possible applications in quantum simulation24

and quantum information processing25. One general diYculty in
this research field is the addressability in these systems, which
has so far been demonstrated only for thermal atoms in a lattice
with 5 µm period26. Not only a site-selective read-out but also a
manipulation of single lattice sites is essential in this context. Here,
we demonstrate the spatially resolved dissipative manipulation of
an ultracold quantum gas in a one-dimensional optical lattice. In
the experiment we first load a Bose–Einstein condensate in a deep
optical lattice (18 recoil energies) and point the electron beam at
a specific site for 35 ms to remove the atoms. As the atoms are
free to move in the radial direction we move the electron beam
across only the central part of the site. After the preparation stage
the atomic distribution is imaged as described before. The optical
lattice shows long-term drifts with respect to the field of view of the
electron beam and we find a typical drift of one lattice site per hour.
Therefore, for long data acquisition times it may occur that during
the preparation stage the electron beam points in between two
lattice sites, thus partially emptying both of them. We compensate
for this eVect, carrying out a phase analysis of each individual
image. If the position of the lattice sites is found to deviate more

3 µm
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Figure 6 Single-site addressability. We first remove atoms from the optical lattice,
pointing the electron beam at the specific sites for 35 ms. Thereafter the image is
taken (200⇥325 pixels, 50 nm pixel size, 2µs pixel dwell time). a, A single emptied
site (sum over 127 images). The lattice depth of 18 recoil energies is enough to
suppress refilling of the lattice site. b, The preparation of an isolated site (sum over
142 images).

than is acceptable from the ideal position (we tolerate ±l/4, where
l is the lattice constant) the image is discarded. The results of two
diVerent scenarios are shown in Fig. 6. In the first image we have
emptied a single lattice site. The data clearly document that this
can be accomplished without aVecting the neighbouring lattice
sites. The second image shows the preparation of an isolated lattice
site. Again, this can be done without additional losses in the non-
addressed sites. This is possible because the electron beam is much
smaller than the spacing between the lattice sites.

OUTLOOK

In future experiments, we plan to study the ensuing tunnelling
dynamics after the dissipative manipulation. Both the refilling
of a hole and the spread of an isolated site are interesting
scenarios, which will give more insight into the microscopic
physics of ultracold quantum gases in optical lattices. The applied
scheme is an important step towards tailored quantum systems
and the preparation of mesoscopic atomic ensembles. With the
implementation of a second optical lattice, the extension to
two-dimensional arrays of lattice sites is straightforward. Ultimate
control over the occupancy of the sites can be achieved by starting
from a Mott insulator state in a three-dimensional optical lattice21

and emptying all but one lattice plane perpendicular to the electron
beam. This can be accomplished, for example, by a magnetic-field
gradient in combination with a microwave transition to a diVerent
hyperfine ground state and subsequent removal of the transferred
atoms with a resonant laser beam.

The combination of high spatial resolution with in situ
detection will open up new possibilities for the preparation,
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Localisation: Discrete Breathers, H.S. Eisenberg et al., Phys. Rev. Lett. 81, 3383 (1998) 
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Continuous System: The NLS in a Periodic 
Potential (Lattice) and Lattice Solitons 
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Figure 1. Phase diagram for the evolution of an initially Gaussian wave-packet with momentum
p: (a) and (b) refer to σ =

√
2 and 10, respectively. Solid and dashed lines correspond to the

theoretical predictions of [12] (see also the body of the text) while the symbols correspond to the
results of numerical simulations. Circles denote the (upper) border of the diffusive region (see the
shaded area); squares correspond to the (lower) border of the region where the evolution converges
to a SB; crosses correspond to Gaussian wave-packets that give rise to MBs with almost no loss of
energy in the process.

which gives rise to the equations

ṗ = 0, ξ̇ = e−η cos p (16)

δ̇ =
(

4
σ 4

− δ2
)

+
2%√
πσ 3

, σ̇ = σδe−η cos p (17)

where η = 1/(2σ 2) + σ 2δ2/8. H and p are constants of motion. It is easy to verify that for
cos p > 0, the packet width remains finite above the critical line

%+ = 2
√
πσ exp

(
− 1

2σ 2

)
cos p. (18)

The region % > %+ was called the self-trapping regime and corresponds to the onset of SBs.
Below such a line, the packet width progressively grows, i.e. we are in the so-called diffusive
regime. For cos p < 0, the scenario is slightly more complicated: the self-trapping region is
delimited from below by the line

%− = −2
√
πσ

[
1 − exp

(
− 1

2σ 2

)]
cos p, (19)

while the diffusive region is delimited from above by the line

%s = −2
√
π

σ
exp

(
− 1

2σ 2

)
cos p. (20)

In between %− and %s curves, the packet is expected to remain confined while moving along
the lattice, i.e. it evolves towards a MB. The resulting phase diagram is reported in figure 1
(see dashed and solid lines) for two different values of the initial packet width, namely σ =

√
2

(panel (a)) and σ = 10 (panel (b)).
In order to test the reliability and degree of approximation of these theoretical predictions,

we have performed numerical simulations on finite lattices with periodic boundary conditions
(the most appropriate ones to follow the convergence towards a MB). We have also varied the
number of potential wells M in order to check the amplitude of finite-size effects, finding that
they are negligible for M >≈ 103. The results of the numerical simulations are reported in
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216 S. Ritter et al.

nance while recording the cavity transmission on a single
photon counter. From the measured photon count rate the
mean intracavity photon number is deduced by correcting
for the quantum efficiency (≈0.5) and the saturation of the
single photon counter, and by taking into account the trans-
mission (2.3 ppm) of the output coupling mirror as well as
the losses at the detection optics (15%). The systematic un-
certainty in determining the intracavity photon number is es-
timated to be 25%.

Typical resonance curves obtained for different pump
strengths are shown in Fig. 3. For maximum intracavity pho-
ton numbers well below the critical photon number ncr the
resonance curve is Lorentzian shaped and does not depend
on the scan direction of the pump laser (a). When increas-
ing the pump strength beyond the critical value we observe a
pronounced asymmetry of the resonance and hysteretic be-
havior which indicates bistability of the system (b). The fre-
quency range over which bistability occurs gets enlarged by
further increasing the pump strength (c).

We compare our experimental data with resonance curves
obtained from a numerical solution of the coupled set of
(1) and (2) including atom-atom interactions and the ex-
ternal trapping potential (red lines in Fig. 3). We find a
critical photon number of ncr = 0.21, in accordance with
our experimental observations within the systematic uncer-
tainties. The inclusion of atom–atom interactions results
in a critical photon number which is slightly larger than
the value 0.18 obtained from the analytical interaction-free
model. For very low photon numbers (a and b) we find
good agreement between the measured and calculated res-
onance curves. However, for increasing pump strengths we
observe that the system deviates more and more from the
calculated steady state curves (c). This is visible in a pre-
cipitate transition from the upper branch to the lower one

while scanning with decreasing ∆c . Such deviations indi-
cate a superposed non-steady state dynamics. This dynamics
is governed by the inertia of our refractive index medium,
and goes beyond the physics of a pure Kerr medium [38].
Experimentally, this is supported by detecting regular os-
cillations in the second order correlation function g(2)(τ )

which was evaluated from the transmission signal right be-
fore the system leaves the upper resonance branch (Fig. 3c,
inset).

5 Dynamics

Coherent non-steady state dynamics of the system can also
be excited more directly by means of a non-adiabatic in-
crease in the cavity light intensity. This is naturally pro-
vided by the sudden transition which appears while scanning
with increasing ∆c across the bistable resonance (Fig. 4a).
Once the system reaches the turning point of the lower stable
branch (Fig. 2) a periodic dynamics is excited which gets ob-
servable through a strongly pulsed cavity transmission. This
dynamics has been reported on previously [19]. In short, a
small fraction of condensate atoms is scattered by the cavity
lattice into the higher momentum states |p = ±2!k⟩. Due to
matter-wave interference with the remaining |p = 0⟩ atoms,
the atomic cloud develops a density oscillation which shifts
the system periodically in resonance with the pump laser.
Direct evidence for the coherence of this dynamics is ob-
tained by recording the atomic momentum distribution via
absorption imaging (Fig. 4b).

Further insight into the non-steady state behavior can be
gained from the analogy between the coupled BEC-cavity

Fig. 4 a Coherent dynamics of the BEC in the dynamical lattice po-
tential. Shown is the count rate of the single photon detector while
scanning with increasing cavity-pump detuning across the bistable res-
onance curve. The scan speed was set to 2π × 2 MHz/ms with a max-
imum intracavity photon number of 9.5. The condensate is excited due
to the non-adiabatic branch transition resulting in oscillations of the
overlap O clearly visible in a periodic cavity output. b Absorption

image revealing the population in the |p = ±2!k⟩ momentum com-
ponents during the coherent oscillations. Once the coherent dynamics
was excited both trapping potential and pump laser were switched off
and the cloud was imaged after 4 ms free expansion. To clearly detect
the small |p = ±2!k⟩ population we averaged over 9 independent im-
ages and subtracted the average of 9 different images without excitation
(taken after the oscillations had stopped [19])

F. Brennecke et al. Science 322, 235 (2008) 
S. Ritter et al., App. Phys. B 95, 213 (2009) 
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Dynamical coupling between a Bose–Einstein condensate and a cavity optical lattice 215

Here, Vext denotes the weak external trapping potential, N

is the total number of atoms, g1D the atom-atom interaction
strength integrated along the transverse directions, and ∆c =
ωp − ωc denotes the cavity-pump detuning.

These coupled equations of motion reflect that the depth
of the cavity lattice potential, which is experienced by the
atoms, depends non-locally on the atomic state ψ via the
overlap O = ⟨ψ | cos2(kx)|ψ⟩. To get insight into the steady-
state behavior of the condensate in this dynamical lattice
potential we first solve (1) for the lowest energy state in
case of a fixed lattice depth. Starting from the variational
ansatz

ψ(x) = c0 + c2
√

2 cos(2kx) (3)

which is appropriate for moderate lattice depths, we find the
overlap integral in the ground state to be O = 1

2 − |α|2U0
16ωrec

.
Here, the external trapping potential Vext and atom–atom
interactions have been neglected for simplicity. Correspond-
ingly, the BEC acts as a Kerr medium that shifts the empty
cavity resonance proportionally to the intracavity light inten-
sity. After inserting this result into the steady state solution
of (2)

|α|2 = η2

κ2 + (∆c − U0N O)2 , (4)

an algebraic equation of third order in |α|2 is obtained which
determines the resonance curve of the system. For suffi-
cient pump strength η the system exhibits bistable behavior
(Fig. 2), a property which is known from optical and me-
chanical Kerr nonlinearity [10, 15, 34–37]. Namely, while
increasing the pump strength η the initially Lorentzian reso-
nance curve of height η2/κ2 gets asymmetric and develops

Fig. 2 Mean intracavity photon number |α|2 of the pumped
BEC-cavity system versus the cavity-pump detuning ∆c calculated for
three different pump strengths η = (0.7,1,2)ηcr (bottom to top curve).
The blue-detuned cavity light field pushes the atoms to regions of lower
coupling strength which gives rise to bistability. The initially symmet-
ric resonance curve centered around ∆c = U0N/2 develops above a
critical pump strength ηcr a bistable region with two stable (solid lines)
and one unstable branch (dashed)

an increasing region with three possible steady states above
a critical value ηcr. A detailed analysis results in a corre-
sponding critical intracavity photon number on resonance
of ncr = 8

3
√

3
16κωrec
NU2

0
.

4 Bistability measurement

To study the nonlinear coupling between BEC and cavity
field experimentally, the pump laser frequency was scanned
slowly (compared to the atomic motion) across the reso-

Fig. 3 Bistable behavior at low photon number. The traces show
the mean intracavity photon number |α|2 versus the cavity-pump
detuning ∆c . Traces a, b and c correspond to pump strengths of
η = (0.22,0.78,1.51)κ , respectively. The intracavity photon number
is deduced from the detector count rate. Each graph corresponds to a
single experimental sequence during which the pump laser frequency
was scanned twice across the resonance, first with increasing detuning
∆c (blue curve) and then with decreasing detuning (green curve). The
scan speed was 2π × 1 MHz/ms and the raw data has been averaged
over 400 µs (a) and 100 µs (b and c). We corrected for a drift of the
resonance caused by a measured atom loss rate of 92/ms assumed to
be constant during the measurement. The theoretically expected stable
resonance branches (red) have been calculated for 105 atoms (deduced
from absorption images) taking a transverse part of the mode overlap
of 0.6 into account. This value was deduced from several scans across
the resonance in the non-bistable regime and is about 25% below the
value expected from the BEC and cavity mode geometry. Shot-to-shot
fluctuations in the atom number resulting in uncontrolled frequency
shifts were corrected for by overlapping the individual data traces a,
b and c with the theoretically expected curves. The inset of c shows
photon-photon correlations of the green trace calculated from the last
400 µs right before the system transits to the lower stable branch. Due
to averaging these oscillations are not visible in the main graph

Dynamical coupling between a Bose–Einstein condensate and a cavity optical lattice 215

Here, Vext denotes the weak external trapping potential, N

is the total number of atoms, g1D the atom-atom interaction
strength integrated along the transverse directions, and ∆c =
ωp − ωc denotes the cavity-pump detuning.

These coupled equations of motion reflect that the depth
of the cavity lattice potential, which is experienced by the
atoms, depends non-locally on the atomic state ψ via the
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state behavior of the condensate in this dynamical lattice
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cavity resonance proportionally to the intracavity light inten-
sity. After inserting this result into the steady state solution
of (2)
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an algebraic equation of third order in |α|2 is obtained which
determines the resonance curve of the system. For suffi-
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The blue-detuned cavity light field pushes the atoms to regions of lower
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ric resonance curve centered around ∆c = U0N/2 develops above a
critical pump strength ηcr a bistable region with two stable (solid lines)
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a critical value ηcr. A detailed analysis results in a corre-
sponding critical intracavity photon number on resonance
of ncr = 8

3
√

3
16κωrec
NU2

0
.

4 Bistability measurement

To study the nonlinear coupling between BEC and cavity
field experimentally, the pump laser frequency was scanned
slowly (compared to the atomic motion) across the reso-

Fig. 3 Bistable behavior at low photon number. The traces show
the mean intracavity photon number |α|2 versus the cavity-pump
detuning ∆c . Traces a, b and c correspond to pump strengths of
η = (0.22,0.78,1.51)κ , respectively. The intracavity photon number
is deduced from the detector count rate. Each graph corresponds to a
single experimental sequence during which the pump laser frequency
was scanned twice across the resonance, first with increasing detuning
∆c (blue curve) and then with decreasing detuning (green curve). The
scan speed was 2π × 1 MHz/ms and the raw data has been averaged
over 400 µs (a) and 100 µs (b and c). We corrected for a drift of the
resonance caused by a measured atom loss rate of 92/ms assumed to
be constant during the measurement. The theoretically expected stable
resonance branches (red) have been calculated for 105 atoms (deduced
from absorption images) taking a transverse part of the mode overlap
of 0.6 into account. This value was deduced from several scans across
the resonance in the non-bistable regime and is about 25% below the
value expected from the BEC and cavity mode geometry. Shot-to-shot
fluctuations in the atom number resulting in uncontrolled frequency
shifts were corrected for by overlapping the individual data traces a,
b and c with the theoretically expected curves. The inset of c shows
photon-photon correlations of the green trace calculated from the last
400 µs right before the system transits to the lower stable branch. Due
to averaging these oscillations are not visible in the main graph

Theory (see later) 

Experiment 

Increasing laser  
amplitude η	


Low η	


Intermediate η	


Large η	
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By eliminating the fast optical field one gets: 
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•  Losses are losses so from a generic initial condition the system dissipates 
•  However, dissipations end when losses κ are balanced by pump η	

•  That happens when the field follows the BEC wave-function (on the center 
     manifold). Here the flow is symplectic since for the Jacobian J one has: 

SJ + JTS = 0 S = 0 I
−I S
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Hamiltonain flows are symplectic 
Symplectic flows maybe Hamiltonian 
Symplectic flows ARE conservative 

Conservative Dynamics So? 
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FIG. 3: (Colour online.) The temporal evolution of the photon number |↵|2, for ⌘/ = 0.99 (Fig. (a), where the upper
panel is a magnification of the top part of the oscillatory trajectory), 1.08 (Fig. (b)), and 1.40 (Fig. (c)), showing
weakly quasi-periodic, chaotic, and quasi-periodic oscillations, respectively. Note that all quantities are dimensionless
(see text before Eq. (3)).

innermost orbit of Fig. 5 with the corresponding projec-
tion in Fig. 6). We note however that, even for values
of ⌘/ as large as 0.99, this quasi-periodicity is barely
visible in the oscillations of the cavity-field intensity, as
demonstrated by the inset in Fig. 3a.
Just above ⌘/ = 1.07, the system evolution ap-

proaches the separatrix that separates the motion con-
fined around a single stationary point to orbits that cir-
cle around all three stationary points. The unstable sep-
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FIG. 4: (Colour online.) Frequency spectra for ⌘/ = 1.08
(black, thick line) and 1.40 (blue, dashed line), with inset
showing ⌘/ = 0.99 (red, thick line) alongside ⌘/ = 1.40
(blue, dashed line) in greater detail (note the leftward fre-
quency shift for the higher value of ⌘/). The spectra for
⌘/ = 0.99 and 1.40 both exhibit characteristic quasi-periodic
behaviour, while the broadened spectrum for ⌘/ = 1.08 in-
dicates chaos. Quantities are dimensionless.

FIG. 5: (Colour online.) Phase-space orbits for ⌘/ = 0.99
(blue, innermost orbit), 1.08 (black, figure-of-eight orbit),
and 1.40 (red, outermost orbit), showing regular oscillations,
(weakly) chaotic dynamics, and quasi-periodic behaviour, re-
spectively. Quantities are dimensionless.

aratrix is embedded in the orbit projection displayed in
Fig. 5 for ⌘/ = 1.08 where weakly chaotic motion is
observed. The critical value of ⌘/ corresponding to the
cross-over between confined and extended orbits in the
(X,P ) plane (i.e., when the initial condition is exactly
located on the separatrix) is estimated from the condi-
tion of tangency of the resonance curves, with respect
to the detuning �

c

, to be at ⌘/ ⇡ 1.16 (see inset of
Fig. 2). From our numerical simulations, we observe
a first interval of chaotic motion for ⌘/ in the range

1.07–1.21, which includes the critical value of tangency.

In [8] the term Hamiltonian chaos was used to describe
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tion in Fig. 6). We note however that, even for values
of ⌘/ as large as 0.99, this quasi-periodicity is barely
visible in the oscillations of the cavity-field intensity, as
demonstrated by the inset in Fig. 3a.
Just above ⌘/ = 1.07, the system evolution ap-
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behaviour, while the broadened spectrum for ⌘/ = 1.08 in-
dicates chaos. Quantities are dimensionless.

FIG. 5: (Colour online.) Phase-space orbits for ⌘/ = 0.99
(blue, innermost orbit), 1.08 (black, figure-of-eight orbit),
and 1.40 (red, outermost orbit), showing regular oscillations,
(weakly) chaotic dynamics, and quasi-periodic behaviour, re-
spectively. Quantities are dimensionless.

aratrix is embedded in the orbit projection displayed in
Fig. 5 for ⌘/ = 1.08 where weakly chaotic motion is
observed. The critical value of ⌘/ corresponding to the
cross-over between confined and extended orbits in the
(X,P ) plane (i.e., when the initial condition is exactly
located on the separatrix) is estimated from the condi-
tion of tangency of the resonance curves, with respect
to the detuning �

c

, to be at ⌘/ ⇡ 1.16 (see inset of
Fig. 2). From our numerical simulations, we observe
a first interval of chaotic motion for ⌘/ in the range

1.07–1.21, which includes the critical value of tangency.

In [8] the term Hamiltonian chaos was used to describe
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•  Experimental initial condition:  
     all atoms in c0 , flat wave-function. 
•  Dynamics depends on initial condition. 
•  Experimental initial condition self-

consistent with model (mean field). 
•  Spectra, Poincare’ sections,  
     thickness of Poincare’ sections 
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tion in Fig. 6). We note however that, even for values
of ⌘/ as large as 0.99, this quasi-periodicity is barely
visible in the oscillations of the cavity-field intensity, as
demonstrated by the inset in Fig. 3a.
Just above ⌘/ = 1.07, the system evolution ap-
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(black, thick line) and 1.40 (blue, dashed line), with inset
showing ⌘/ = 0.99 (red, thick line) alongside ⌘/ = 1.40
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⌘/ = 0.99 and 1.40 both exhibit characteristic quasi-periodic
behaviour, while the broadened spectrum for ⌘/ = 1.08 in-
dicates chaos. Quantities are dimensionless.

FIG. 5: (Colour online.) Phase-space orbits for ⌘/ = 0.99
(blue, innermost orbit), 1.08 (black, figure-of-eight orbit),
and 1.40 (red, outermost orbit), showing regular oscillations,
(weakly) chaotic dynamics, and quasi-periodic behaviour, re-
spectively. Quantities are dimensionless.

aratrix is embedded in the orbit projection displayed in
Fig. 5 for ⌘/ = 1.08 where weakly chaotic motion is
observed. The critical value of ⌘/ corresponding to the
cross-over between confined and extended orbits in the
(X,P ) plane (i.e., when the initial condition is exactly
located on the separatrix) is estimated from the condi-
tion of tangency of the resonance curves, with respect
to the detuning �

c

, to be at ⌘/ ⇡ 1.16 (see inset of
Fig. 2). From our numerical simulations, we observe
a first interval of chaotic motion for ⌘/ in the range

1.07–1.21, which includes the critical value of tangency.

In [8] the term Hamiltonian chaos was used to describe

5

the oscillations of a BEC-optomechanical-cavity system
since the feedback dynamics was provided by a mov-
ing mirror. As in that paper, we have eliminated

the dynamical equation for the cavity field, giv-

ing Eq. (4). It is important to note that when

the cavity-field dynamics are incorporated, al-

though the cavity-BEC system is dissipative, the

dissipation nonetheless converges to a conserva-

tive sub-volume of the phase space; it is this

phase space that we investigate here. Contrary

to [8], however, in our case, the full Hamiltonian char-
acter of the interaction mediated through the integral
O0 = h | sin2(⇡x/2) | i cannot be established. Despite

this, the conservation in time of the total atomic density
is clearly proven, and consequently the chaotic motion is
“conservative” in nature, in contrast to dissipative chaos.
We are now able to explain the evolution of the photon

number |↵|2 with increasing values of ⌘ as displayed in
Fig. 3. For values of ⌘/ < 1.07, such as that of Fig. 3a,
|↵|2 displays a clear (quasi-)periodic evolution. Near the
separatrix (e.g., at ⌘/ = 1.08, as in Fig. 3b), chaotic
oscillations in the photon number become apparent; this
behaviour is characteristic of conservative chaos. Finally
for values beyond the separatrix region, the oscillation
of the photon number is often quasi-periodic or locked
between the two competing frequencies such as that used
in Fig. 3c.
For a BEC-cavity system where the scattering length

a ⇡ 0 (e.g., if operating close to a Feshbach resonance),
we observe after the separatrix chaos an alternation of
quasi-periodic and chaotic behaviours (see the Poincaré
sections in Figs. 6a and 6b). The appearance and disap-
pearance of chaotic dynamics is due to successive tran-
sitions from quasi-periodic motion to frequency lockings,
and vice-versa, typical of the quasi-periodic route to
chaos [18].

3.3. Spatial behaviour of the BEC

In addition to the (temporal) frequency spectra of the
previous section, we also consider the time-averaged spa-
tial spectra of the BEC wave function/order parameter,
 (x, t), as shown in Fig. 7 for ⌘/ = 0.99, 1.08, and 1.40
corresponding to the phase-space plots of Fig. 5.
The spatial frequency components c

n

with spatial pe-
riods �/2n are calculated from the integration of the
full model equations using Eq. (5). The amplitude
of the zero-frequency (spatially uniform) component of
the BEC, c

0

, dominates the amplitudes of the non-
zero spatial-frequency components for all the parame-
ter ranges considered here (see for example the cases of
Fig. 7). The significance of the additional spatial modes
varies depending on the value of ⌘. In Fig. 7a, where
⌘/ = 0.99, the dynamics is dominated by the first spa-
tial mode/motional state of the BEC, i.e., the compo-
nent of the BEC with spatial period equal to �/2, with
the second spatial harmonic having an amplitude that is
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FIG. 6: (Colour online.) (a) Poincaré sections constructed
from the orbits shown in Fig. 5, for the values ⌘/ = 0.99
(blue crosses), 1.08 (black circles), and 1.40 (red squares).
(b) Poincaré sections for ⌘/ = 2.1 (blue crosses), 2.4 (black
circles), and 3.0 (red squares). Quantities are dimension-
less.

smaller by three orders of magnitude. Higher harmonics
have negligible amplitude. Fig. 7b, where ⌘/ = 1.08,
shows the presence of additional spatial modes while the
relative amplitude of each spatial frequency component
to the next is reduced compared to Fig. 7a. This indi-
cates that the spatial behaviour of the BEC is now more
complex due to the chaotic motion. The distribution
of excited spatial modes in Fig. 7c, where ⌘/ = 1.40,
is similar to that of Fig. 7b, whose peaks are indicated
on Fig. 7c for comparison. While the dominant spatial
modes have now become even more significant, it should
be noted that the highest frequency component visible in
the spectrum of Fig. 7b at ±12.5 is now absent, indicat-
ing a simpler dynamical regime than that of Fig. 7b.

There are two important facts about the dynamics of
the modal amplitudes displayed in Fig. 7. First, we al-
ways observe symmetry between the averaged positive
and negative n components with equal |n|. Second, al-
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FIG. 10: (Colour online.) Alternative approaches for quantifying the chaotic dynamics of the BEC-cavity system. The plots of
(a)–(c) show the thickness of phase-space portraits, such as those from Fig. 5, for a range of values of ⌘; plots (d)–(f) show for
the same range the number of components in the power spectra for |↵|2 (normalised to unity) with a magnitude greater than
10�3. Quantities are dimensionless.

example, recent experiments have shown that the reso-
nance of the BEC-cavity system is altered by the presence
of atom-atom interactions. In this section, we therefore
extend our analysis of the BEC-cavity’s chaotic dynam-
ics to include repulsively interacting condensates (⇤ > 0)
and show that chaotic dynamics becomes a ubiquitous
feature of the BEC-cavity interaction. Poincaré sections
for representative instances of repulsive condensates are
used to indicate the presence of wide-ranging chaotic be-
haviour, while, for the purposes of quantifying the degree
of chaos exhibited by each of the two alignments, we eval-
uate the widths along the X-axis of the orbits in the
phase space (X,P ), such as those shown in Fig. 5. To do
this, we record the thicknesses at the negative-to-positive
zero crossing of P (this ensures that we record only the
leftmost part of the phase-space orbit). As the measured
widths of the plots increase, so too does the spread of
the data points in the corresponding Poincaré sections.
Transient behaviours have been discarded. In order to
focus on the main features, we restrict our consideration
to values of ⌘/ over the range 0.90–4.10; that is, only
the quasi-periodic and chaotic domains are considered.

Fig. 6 shows the Poincaré sections for three di↵erent

values of pump intensity ⌘, exhibiting the variety of be-
haviours for the non-interaction model. Similarly, we now
evaluate the sections for both the transverse (⇤ = 85.5)
and longitudinal (⇤ = 204) BEC alignments. For ⇤ > 0,
the onset of chaos is attained at larger values of ⌘ with
respect to the non-interaction case: where previously the
onset of chaotic dynamics was apparent from ⌘/ ⇡ 1.07,
we find that it is now shifted upwards to ⌘/ ⇡ 1.47
(⌘/ ⇡ 1.88) for ⇤ = 85.5 (⇤ = 204). With ⌘ ad-
justed accordingly, we obtain Fig. 8 (⇤ = 85.5) and Fig. 9
(⇤ = 204).

The sections for the two alternative alignments both
show that chaos is now a predominant feature of the in-
teraction dynamics. As in Fig. 6, the section below the
onset of chaotic dynamics displays quasi-periodicity. Be-
yond this however, we find that the behaviour is exclu-
sively chaotic, with the two largest values of ⌘/ in each
of Figs. 8 and 9 showing a spread in the distribution of
points that increases in a roughly linear fashion with in-
creasing ⌘.

Beyond a critical value of ⌘, the widths of the phase
plots, given in Figs. 10a–c, tend to increase in a roughly
linear fashion with ⌘ for ⇤ > 0, while for the model
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FIG. 2: (Colour online.) Resonance curves of increasing
size for ⌘/ = 0.32 (green, smallest), 0.64 (blue, dotted),
1.16 (black, solid), and 1.40 (red, dashed-dotted, largest).
The vertical dashed line (brown), at �c �U

0

N/2 = �5, in-
dicates the detuning used to investigate the behaviour of the
system for increasing pump intensities, and the inset shows
the region near this detuning in more detail, for the val-
ues ⌘/ = 1.40 (red, leftmost dashed-dotted curve),
1.16 (black, middle curve), and 0.64 (blue, rightmost
dotted curve). The y-axis is normalised by |↵|2

cr

, the crit-
ical value beyond which bistability occurs. (Note that the
scattering length here is set to zero.) Quantities are di-
mensionless.

3. BISTABILITY, NONLINEAR DYNAMICS,
AND CHAOS IN A NON-INTERACTING

CONDENSATE

3.1. Bistability

Eqs. (3) and (4) have steady-state solutions, depicted
in Fig. 2 for the case where atomic collisions are neglected
(⇤ = 0), that show nonlinear resonance and bistability
when the pump intensity exceeds a critical value [4, 6].
In order to investigate the nonlinear dynamics of the sys-
tem, we solve the full Eqs. (3) and (4) using a split-step
FFT method for a fixed value of the pump-cavity detun-
ing, �

c

� NU

0

/2 = �5. We use the pump rate ⌘ as a
controllable parameter for investigation of the dynamics
of the bistable region of the resonance curves. Note that,
although we use a fixed value for the detuning here, the
system behaviour described is generic, and that similar
results are obtained for a wide range of values of �

c

if
the pump intensity is also modified accordingly.
The system conserves the total number of atoms N

during the dynamical evolution. For this reason, it is
important to specify the initial condition correspond-
ing to particular experimental conditions. In this paper
we consider the BEC initially at rest in a homogeneous
state where the number of atoms is uniformly distributed

across the optical cavity. We shall see that the choice of
this initial condition corresponds to the dynamics on in-
variant manifolds when considering modal expansion of
the BEC wave function  in Sec. 5.

3.2. Nonlinear dynamics and chaos

Examples of cavity photon-number evolution as a func-
tion of time are shown in Fig. 3 for three values of ⌘
(⌘/ = 0.99, 1.08, and 1.40), corresponding to three dis-
tinct cases of crossing the bistable region of the nonlinear
resonance curves indicated by the dotted line in Fig. 2.
As was demonstrated in [4], the photon-number evolu-
tion displays nonlinear oscillations. In order to distin-
guish between the di↵erent kinds of nonlinear oscillation
that occur, we study the frequency spectrum of the in-
tracavity intensity/photon number and the evolution of
the BEC for these di↵erent pumping rates. Fig. 4 shows
the temporal spectra of the cavity photon number |↵|2
for the same values of pump rate, ⌘, as used in Fig. 3,
i.e., ⌘/ = 0.99, 1.08, and 1.40. It can be seen that the
frequency spectra change qualitatively as ⌘ is increased:
the spectrum is dominated by a single frequency indi-
cating regular oscillation when ⌘/ = 0.99 (see inset in
Fig. 4), while there is a much broader spectrum sugges-
tive of chaotic behaviour when ⌘/ = 1.08, and when
⌘/ = 1.40, the spectrum is composed of a number of
distinct frequencies characteristic of quasi-periodic non-
linear oscillations.

In order to further investigate the nonlinear behaviour
of the full system, we obtain phase-space plots using the
modes

c

n

(t) =
1

L

D

Z
LD/2

�LD/2

 (x, t) e�i⇡nx dx, (5)

where L

D

is the length of the BEC in units of x, i.e.,
L

D

= 2L
BEC
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is the length of the BEC.
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)/2), we are
then able to plot the system’s evolution in phase space
(Fig. 5). By constructing Poincaré sections of the phase-
space orbits, we are then able to evaluate the true pe-
riodicity of the system. Poincaré sections are evaluated
at the zero-crossing of the real part of the first motional
state of the condensate, c

1

. The sections resulting from
this approach corresponding to the orbits of Fig. 5 are
provided in Fig. 6.

At very low pump intensities (⌘/ < 0.10 for our pa-
rameters), the system displays periodic behaviour in both
the photon number |↵|2 and the BEC dynamics, as shown
by the Poincaré sections (which correspond to a single
point). For values of ⌘/ above 0.33, the system enters
the nonlinear regime (consider, for example, the reso-
nance curve given in Fig. 2 for ⌘/ = 0.64). For values
of ⌘/ above this, but below ⌘/ = 1.07, quasi-periodic
behaviour is apparent in the Poincaré sections (cf. the
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FIG. 7: (Colour online.) Averaged spatial spectra for ⌘/ = 0.99, 1.08, and 1.40, showing the amplitudes of the spatial
frequency components cn. Fig. (a) indicates the two main modes that describe the BEC wave function. In (b), additional
modes are apparent, and the prominence of the main mode is lessened as a consequence of the increased influence of the new
modes. Once we reach ⌘/ = 1.40, we see that the highest-frequency mode apparent in (b) has disappeared. Quantities are
dimensionless.

though the dynamics for values of ⌘/ larger than one are
quite complex, the exponential decrease of the mode am-
plitude with increasing |n| demonstrates that the number
of active modes is always finite and limited to less than
nine.

4. WIDESPREAD CHAOS IN A REPULSIVE
BEC
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FIG. 8: (Colour online.) Phase-space orbits for a repulsive
BEC (⇤ = 85.5) when ⌘/ = 1.43 (blue crosses), 1.77 (black
circles), and 2.22 (red squares), showing quasi-periodic oscil-
lations and chaotic dynamics. Quantities are dimension-
less.

In Section 3 it was shown that when atom-atom inter-
actions/collisions were negligible the BEC-cavity mode
interaction gave rise to chaotic dynamics for certain val-
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FIG. 9: (Colour online.) Phase-space orbits for a repulsive
BEC (⇤ = 204) when ⌘/ = 1.80 (blue crosses), 2.27 (black
circles), and 2.84 (red squares), showing quasi-periodic oscil-
lations and chaotic dynamics. Quantities are dimension-
less.

ues of the pumping rate ⌘/. Reducing the magnitude of
the interaction term is possible experimentally by either
moving closer to a Feshbach resonance or by manipulat-
ing the alignment of the condensate with respect to the
cavity axis, thus reducing the cross-section of the con-
densate. Although this reduces the e↵ect of atom-atom
interactions on the one-dimensional model, typical values
of the scattering length in 87Rb show that the magnitude
of the interaction term can still be significant: for our pa-
rameters, ⇤ = 85.5 for a transversely aligned BEC, com-
pared to ⇤ = 204 for a longitudinally aligned condensate.

The significance of atom-atom interactions is too great
to be neglected (see, e.g., [10]); as mentioned in Sec. 1, for
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of spatial modes, however, suggests that the dynamics of
the BEC remains confined to a small number of variables
even when the system is chaotic. Here we derive a simpli-
fied model of the BEC-cavity interaction using a projec-
tion onto a number of spatial modes, which is capable not
only of reducing to the model of [6], but also of describing
chaos and including atom-atom interactions. Our model
shows that, in contrast to the ⇤ = 0 case where the dy-
namics is mostly quasi-periodic, in cases where ⇤ > 0,
chaos is ubiquitous beyond a critical input value. Fur-
thermore, our model gives an alternative — deterministic
— account for previously experimentally observed inter-
mittent oscillations [6] attributed to stochastic detector
noise.

5.1. Modal expansion

For our reduced model, we assume that the BEC wave
function is periodic on the scale of the lattice period �/2
and can therefore be well-described by a finite series of
N

max

spatial modes

 (x, t) =
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n
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maxX

n=�N

max

c

n

(t)ein⇡x, (6)

where n

L

= L

BEC

/(�/2) is the number of lattice sites
occupied by the BEC. Substituting  (x, t) as defined in
Eq. (6) into Eq. (3) we obtain
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where ⇤0 = ⇤/n
L

, while the overlap integral, O0 in
Eq. (4), becomes
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In what follows, we investigate cases that involve trun-
cating the modal expansion (i.e., reducing the value of
N

max

), and comparing the predictions of these reduced
models with the results from the full model presented
above, in order to determine the level of model com-
plexity and dimension required to capture the relevant
features of the interaction dynamics.
The model of [6], which involves only a spatially uni-

form BEC component plus a component with spatial
period �/2, is recovered by imposing N

max

= 1 in
Eqs. (6)–(8), c�1

= c

1

and |c
0

|2 >> |c
1

|2. While this
N

max

= 1 model is capable of describing some of the non-
linear features of the system behaviour when the BEC is
non-interacting (⇤ = 0), such as the bistability shown

FIG. 13: (Colour online.) Projection of the three-dimensional
evolution of system (11)–(13) on the (X,D) plane showing a
clear two-dimensional dynamics and no chaotic motion. The
parameters are: top (red) curve (⇤0 = 0, ⌘/ = 1.2), interme-
diate (black) curve (⇤0 = 4.275, ⌘/ = 1.8) and bottom (blue)
curve (⇤0 = 10.2, ⌘/ = 2.5). Quantities are dimension-
less.

in Fig. 2 and the regular oscillations in Fig. 3 (cf. [6]),
it cannot show chaotic dynamics. As shown in Sec. 3.2,
chaos does occur for a non-interacting BEC, and is a
dominant feature of the nonlinear dynamics in a repul-
sive condensate (⇤ > 0) (see Sec. 4). It is then neces-
sary to go beyond the N

max

= 1 case in order to de-
scribe the full nonlinear dynamics of the BEC-cavity in-
teraction. We consequently show that extension of the
spatial-mode model to five modes (i.e., N

max

= 2, so that
n = 0,±1,±2) gives good agreement with the results of
the full model of Eq. (3), even in cases where the system
dynamics is chaotic.

5.2. The three-mode and the two-mode models
(n = 0,±1)

A key feature of the modal expanded equations
Eqs. (6)–(8) is symmetry. In the case of three modes
n = 0,±1, for example, the six dynamical equations are
invariant upon the exchange of the n = ±1 indices. When
writing the modal equations in amplitude and phase by
using c

n

= µ

n

exp(i�
n

) the index symmetry is reflected
in the evolution of the di↵erence of the modal amplitudes
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of spatial modes, however, suggests that the dynamics of
the BEC remains confined to a small number of variables
even when the system is chaotic. Here we derive a simpli-
fied model of the BEC-cavity interaction using a projec-
tion onto a number of spatial modes, which is capable not
only of reducing to the model of [6], but also of describing
chaos and including atom-atom interactions. Our model
shows that, in contrast to the ⇤ = 0 case where the dy-
namics is mostly quasi-periodic, in cases where ⇤ > 0,
chaos is ubiquitous beyond a critical input value. Fur-
thermore, our model gives an alternative — deterministic
— account for previously experimentally observed inter-
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noise.
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In what follows, we investigate cases that involve trun-
cating the modal expansion (i.e., reducing the value of
N

max

), and comparing the predictions of these reduced
models with the results from the full model presented
above, in order to determine the level of model com-
plexity and dimension required to capture the relevant
features of the interaction dynamics.
The model of [6], which involves only a spatially uni-

form BEC component plus a component with spatial
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linear features of the system behaviour when the BEC is
non-interacting (⇤ = 0), such as the bistability shown

FIG. 13: (Colour online.) Projection of the three-dimensional
evolution of system (11)–(13) on the (X,D) plane showing a
clear two-dimensional dynamics and no chaotic motion. The
parameters are: top (red) curve (⇤0 = 0, ⌘/ = 1.2), interme-
diate (black) curve (⇤0 = 4.275, ⌘/ = 1.8) and bottom (blue)
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in Fig. 2 and the regular oscillations in Fig. 3 (cf. [6]),
it cannot show chaotic dynamics. As shown in Sec. 3.2,
chaos does occur for a non-interacting BEC, and is a
dominant feature of the nonlinear dynamics in a repul-
sive condensate (⇤ > 0) (see Sec. 4). It is then neces-
sary to go beyond the N
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= 1 case in order to de-
scribe the full nonlinear dynamics of the BEC-cavity in-
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dynamics is chaotic.

5.2. The three-mode and the two-mode models
(n = 0,±1)
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of spatial modes, however, suggests that the dynamics of
the BEC remains confined to a small number of variables
even when the system is chaotic. Here we derive a simpli-
fied model of the BEC-cavity interaction using a projec-
tion onto a number of spatial modes, which is capable not
only of reducing to the model of [6], but also of describing
chaos and including atom-atom interactions. Our model
shows that, in contrast to the ⇤ = 0 case where the dy-
namics is mostly quasi-periodic, in cases where ⇤ > 0,
chaos is ubiquitous beyond a critical input value. Fur-
thermore, our model gives an alternative — deterministic
— account for previously experimentally observed inter-
mittent oscillations [6] attributed to stochastic detector
noise.

5.1. Modal expansion
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cating the modal expansion (i.e., reducing the value of
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models with the results from the full model presented
above, in order to determine the level of model com-
plexity and dimension required to capture the relevant
features of the interaction dynamics.
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linear features of the system behaviour when the BEC is
non-interacting (⇤ = 0), such as the bistability shown
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clear two-dimensional dynamics and no chaotic motion. The
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chaos does occur for a non-interacting BEC, and is a
dominant feature of the nonlinear dynamics in a repul-
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sary to go beyond the N
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teraction. We consequently show that extension of the
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= 2, so that
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the BEC remains confined to a small number of variables
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chaos does occur for a non-interacting BEC, and is a
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= 2, so that
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the equations of motion for the coupled system
read

iħẏðxÞ ¼
!

–ħ2

2m
d2

dx2
þ 〈a%†a%〉ħU0cos2ðkxÞ þ

VextðxÞ þ g1Djyj2
"

yðxÞ

ia%̇ ¼ –

!

Dc –U0〈cos2ðkxÞ〉þ ik
"

a%þ ih

(20). Here,Vext denotes theweak external trapping
potential for atoms with mass m, and g1D is the
effective atom-atom interaction strength integrated
along the transverse directions.

Equation 1 describes the condensate dynam-
ics in a dynamic lattice potential. Its depth is
determined by the mean intracavity photon num-
ber 〈a%†a%〉, which depends in a nonlocal and
nonlinear way on the condensate wave function
y itself. For a single intracavity photon, the po-
tential depth is given by the light shiftU0 = g0

2/Da.
The coupling between the cavity field and the
atomic external degrees of freedom is mediated by
the spatial overlap 〈cos2(kx)〉 = ∫|y(x)|2 cos2(kx)dx
between atomic density and cavity mode struc-
ture, with wavelength l = 2p/k = 780 nm. This
mode overlap determines the effective refractive
index of the condensate, andwith it the frequency
shift of the empty cavity resonance in Eq. 2. The
pump laser, which coherently drives the cavity
field at a rate h, is detuned from the empty cavity
frequency wc by Dc = wp − wc.

The observed BEC-cavity dynamics (Fig. 2)
can be described in a homogeneous two-mode
model where the macroscopically occupied zero-
momentum state is coupled to the symmetric
superposition of the T2ħk momentum states via
absorption and stimulated emission of cavity
photons. The corresponding wave function reads
y(x, t) = c0(t) + c2(t)

ffiffiffi

2
p

cos(2kx), with probability
amplitudes c0 and c2 fulfilling |c0(t)|

2 + |c2(t)|
2 =

N. The mode overlap is then given by 〈cos2(kx)〉 =
[N +

ffiffiffi

2
p

Re(c0*c2)]/2. It oscillates under kinetic
evolution ofy at 4 times the recoil frequencywrec =
ħk2/(2m) = 2p × 3.8 kHz, with the atom-atom
interactions being neglected at this stage. This
leads to the natural definition of a harmonic oscil-
lator with displacementX = 2

ffiffiffiffiffiffiffiffiffi

1=N
p

Re(c0*c2) in
units of the oscillator length, and its conjugate
variable P = ħ

ffiffiffiffiffiffiffiffiffi

1=N
p

Im(c0*c2). The equations
of motion (Eqs. 1 and 2) for |c2|

2/|c0|
2 << 1 then

read as

DX þ ð4wrecÞ2X ¼ −wrecU0

ffiffiffiffiffiffiffi

8N
p

〈%a†%a〉 ð3Þ

i%ȧ¼ −ðDþ ikÞ%aþ ih ð4Þ

and describe a mechanical oscillator coupled via
the radiation pressure force to the field of a cavity
whose resonance frequency shiftD =Dc –U0N/2 –
U0/2

ffiffiffiffiffiffiffiffiffi

N=2
p

X depends linearly on the oscillator
displacement X (21). The coupling strength
between the optical and mechanical resonator
can be varied via the atom-pump detuning Da,

which allows us to experimentally enter the
regime of strong coupling.

From this equivalence to cavity optomechan-
ics, we can anticipate bistable behavior. Indeed,
for pump rates larger than a critical value hcr, we
find three steady-state solutions for the oscillator
displacement X, with two of them being stable
(Fig. 3A) (15, 22, 23). The system prepared below
the resonance will follow the steady-state branch
until reaching the lower turning point, where a
non–steady-state dynamics is excited. This dynam-

ics is governed by the time scale of the mechanical
motion because the cavity damping is two orders
of magnitude faster. Thus, we can assume that the
cavity field follows the mechanical motion adia-
batically and that retardation effects, underlying
cooling and amplification, are negligible (21).
Numerical integration of the coupled Eq. 3 for
our experimental parameters results in fully mod-
ulated oscillations of the cavity field and cavity
output (Fig. 3B), which is in very good agreement
with the experimental observations (Fig. 2B).

Fig. 4. Oscillation frequency while
scanning over the resonance. The
frequency within time bins of 50 ms
was obtained from a peak-detection
routine applied to the cavity trans-
mission data averaged over 10 ms.
The data (solid circles) are an aver-
age, TSE, over 23 traces referenced
to the start of the oscillations. Open
circles show the result of a numerical
integration of the one-dimensional
system (Eqs. 1 and 2) taking atomic interactions and external trapping into account (26). The mean
intracavity photon number on resonance was 3.6 T 0.9. To fit the slope of the data, we added the effect of
a dynamically induced atom loss during the time of oscillations of 1.5 × 103/ms to the experimental
frequency chirp of D

:
c = 2.9 MHz/ms. The background rate of atom loss was measured to be 45/ms, and an

atom number of (116 T 18) × 103 was deduced from absorption images taken after the oscillations.
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Fig. 3. Steady-state and dynamical behavior of the BEC-cavity system in the two-mode model. (A) Mean
intracavity photon number and corresponding oscillator displacement X versus cavity-pump detuning Dc
for the steady-state solutions of Eqs. 3 and 4. The curves correspond to mean intracavity photon numbers
on resonance of h2/k2 = 0.02, 0.07, 1, and 7.3, and a pump-atom detuning of Da = 2p × 32 GHz. The
inset highlights the bistable behavior for pump amplitudes larger than hcr ≈ 0.27k. (B) Intracavity photon
number |a|2 and corresponding transmission count rate r (including detection shot noise and averaging
over 2 ms) for the system circling along the solid line in (E). For integration of the equations of motion, a
coherent intracavity field a was assumed. (C to E) Evolution of the system in the mechanical phase space
depicted for three subsequent situations [Dc = 2p × (200, 209.7, 215) MHz] corresponding to the markers
in (A) and h2/k2 = 7.3. The stable and unstable steady-state configurations are displayed as solid and
open circles, respectively. Dashed lines show representative evolutions for different starting conditions.
Coloring indicates the modulus of the time evolution field (X

:
, 2P

:
/ħ). The solid lines in (D) and (E) cor-

respond to the experimental situation in Fig. 2A and show the evolution of the system while scanning Dc at a
rate of 2p × 2.9 MHz/ms across the resonance with the system initially prepared in the lower stable solution.

ð1Þ

ð2Þ
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Two or three modes theory. 

The time scale of the oscillations is predicted correctly but the nature of  
the oscillations is not correct. In the experiments the fluctuations were 
‘explained’ by a dodgy detector (we do not think so). 
 
Although the modal amplitude decreases exponentially with the mode  
index, more modes are NECESSARY to explain the experiments 
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d(φ1 − φ−1)
dt

= µ0|α|2V0

4

×
(

cos(φ1 − φ0)
µ1

− cos(φ−1 − φ0)
µ−1

)

+#′ (µ2
1 − µ2

−1

)
− #′µ2

0

(
µ−1

µ1
− µ1

µ−1

)

× cos (φ1 + φ−1 − 2φ0) . (12)

These equations demonstrate the existence of an invariant
manifold, since for initial conditions satisfying c−1 = c1 there
is no evolution of the differences of their phases and their
amplitudes so that c−1 = c1 remains valid at all times. The
invariant manifold is then characterized by the dynamics
of only two modes, e.g., c0 and c1. The dynamics outside
this invariant manifold corresponding to nontrivial initial
conditions is outside the scope of this paper and will be
discussed elsewhere.

By using again the decomposition into amplitudes and
phases, it is also possible to demonstrate that there are only
three coupled dynamical variables, the amplitudes µ0 and
µ1 and the phase difference $ = φ1 − φ0. The evolution of
the phase sum is affected by these three variables but does
not, in turn, affect their dynamics. Since the three equations
for µ0, µ1, and $ are complemented by the conservation
condition of |c0|2 + 2|c1|2 = 1/2, the dynamical variables
reduce from the initial six to just two variables, and chaotic
dynamics becomes impossible. Note that this conclusion is
slightly different from the implementation made in [4,6],
where a reduction of coupled variables is attained under
the approximation |c0|2 ≡ 1/2, which is also used in [8].
To illustrate the two-dimensional nature of the three-mode
dynamics on the invariant manifold, we have introduced the
variables R = Re(c0c

∗
1) and I = Im(c0c

∗
1), in agreement with

FIG. 13. (Color online) Projection of the three-dimensional evo-
lution of system (13)–(15) on the (X,D) plane showing a clear
two-dimensional dynamics and no chaotic motion. The parameters
are as follows: top (red) curve (#′ = 0,η/κ = 1.2), intermediate
(black) curve (#′ = 4.275,η/κ = 1.8), and bottom (blue) curve
(#′ = 10.2,η/κ = 2.5). Quantities are dimensionless.

FIG. 14. (Color online) Phase-space portraits as calculated from
the five-mode model [Eq. (8)] when Nmax = 2 when a noninteracting
condensate (# = 0) for the values η/κ = 0.99 (blue, innermost orbit),
1.08 (black, figure-of-eight orbit), 1.40 (red, outermost orbit). See
Fig. 5 for a comparison with the results of the full model. Note that
quantities are dimensionless.

[4,6], and D = |c0|2 − 2|c1|2 to obtain

dR

dt
= I

[
−π2

2
+ #′

4

(
D − 1

2

)]
, (13)

dI

dt
= π2

2
R − |α|2V0D

4
+ #′R

4

(
7D + 1

2

)
, (14)

dD

dt
= 2I (|α|2V0 − 8#′R), (15)

where α of Eq. (4) now contains O′ = 1/2 − 2R. Note that
the condition of the conservation of the total BEC mass has
now been entered into the dynamical equations and that the
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FIG. 15. (Color online) Poincaré sections as calculated from the
mode model [Eq. (8)] when Nmax = 2 for the case of a repulsive
condensate where #′ = 4.275, for η/κ = 1.43 (blue crosses), 1.77
(black circles), and 2.22 (red squares). See Fig. 8 for a comparison
with the results of the full model. Quantities are dimensionless.
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FIG. 3: (Colour online.) The temporal evolution of the photon number |↵|2, for ⌘/ = 0.99 (Fig. (a), where the upper
panel is a magnification of the top part of the oscillatory trajectory), 1.08 (Fig. (b)), and 1.40 (Fig. (c)), showing
weakly quasi-periodic, chaotic, and quasi-periodic oscillations, respectively. Note that all quantities are dimensionless
(see text before Eq. (3)).

innermost orbit of Fig. 5 with the corresponding projec-
tion in Fig. 6). We note however that, even for values
of ⌘/ as large as 0.99, this quasi-periodicity is barely
visible in the oscillations of the cavity-field intensity, as
demonstrated by the inset in Fig. 3a.
Just above ⌘/ = 1.07, the system evolution ap-

proaches the separatrix that separates the motion con-
fined around a single stationary point to orbits that cir-
cle around all three stationary points. The unstable sep-
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FIG. 4: (Colour online.) Frequency spectra for ⌘/ = 1.08
(black, thick line) and 1.40 (blue, dashed line), with inset
showing ⌘/ = 0.99 (red, thick line) alongside ⌘/ = 1.40
(blue, dashed line) in greater detail (note the leftward fre-
quency shift for the higher value of ⌘/). The spectra for
⌘/ = 0.99 and 1.40 both exhibit characteristic quasi-periodic
behaviour, while the broadened spectrum for ⌘/ = 1.08 in-
dicates chaos. Quantities are dimensionless.

FIG. 5: (Colour online.) Phase-space orbits for ⌘/ = 0.99
(blue, innermost orbit), 1.08 (black, figure-of-eight orbit),
and 1.40 (red, outermost orbit), showing regular oscillations,
(weakly) chaotic dynamics, and quasi-periodic behaviour, re-
spectively. Quantities are dimensionless.

aratrix is embedded in the orbit projection displayed in
Fig. 5 for ⌘/ = 1.08 where weakly chaotic motion is
observed. The critical value of ⌘/ corresponding to the
cross-over between confined and extended orbits in the
(X,P ) plane (i.e., when the initial condition is exactly
located on the separatrix) is estimated from the condi-
tion of tangency of the resonance curves, with respect
to the detuning �

c

, to be at ⌘/ ⇡ 1.16 (see inset of
Fig. 2). From our numerical simulations, we observe
a first interval of chaotic motion for ⌘/ in the range

1.07–1.21, which includes the critical value of tangency.

In [8] the term Hamiltonian chaos was used to describe

η/κ=0.99	


η/κ=1.08	


η/κ=1.04	


Five equation ODE model Full PDE model 

Impressive. It includes chaos 
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FIG. 10. (Color online) Alternative approaches for quantifying the chaotic dynamics of the BEC-cavity system. The plots of (a)–(c) show
the thicknesses of phase-space portraits, such as those from Fig. 5, for a range of values of η; plots (d)–(f) show for the same range the number
of components in the power spectra for |α|2 (normalized to unity) with a magnitude greater than 10−3. Quantities are dimensionless.

(204), a substantial increase in the number of high-magnitude
components is apparent.

The widespread presence of nonlinear chaotic motion
when # > 0 may appear at odds with recent predictions of
decreasing regions of bistability when increasing atom-atom
interaction strengths [10]. However, we also find that bistable
regions shrink for # > 0 as depicted in Figs. 11 and 12,
in agreement with [10]. We have extrapolated that for high
enough values of #, the bistability will disappear. As shown in
Fig. 11, for a fixed value of η, the bistable region is decreased
as # is increased; for an interaction strength of # = 204,
corresponding to an axially aligned condensate, there is no
bistability from η/κ ≈ 0.34 (the bistability threshold for the
# = 0 case) up to η/κ ≈ 0.63. In an environment where
the interaction strength can be tuned (e.g., by manipulating
the scattering length near a Feshbach resonance), this provides
the opportunity to use the BEC-cavity system as an optical
switch [22]. This mechanism could potentially be used instead
of, or in addition to, other switching methods such as the
introduction of a transverse beam above a threshold intensity
[23] or the addition of a Kerr medium into the cavity [24].

V. REDUCED MODEL OF THE BEC-CAVITY
NONLINEAR DYNAMICS

The results presented in Secs. III and IV show that the
dynamics of the BEC-cavity interaction, as predicted by the

full model represented by Eq. (3), is rich and complex.
However, the spatial spectra shown in Fig. 7 suggest that even
when the dynamics is highly nonlinear and chaotic, the spatial
dynamics of the BEC is relatively simple, being dominated
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FIG. 11. (Color online) Best-fit curves depicting the width of the
region of bistability for both the noninteraction case (red dashed
curve) and the two alternative alignments, for # = 85.5 (black
middle curve) and # = 204 (blue dotted curve). Quantities are
dimensionless.
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FIG. 16. (Color online) Poincaré sections as calculated from the
mode model [Eq. (8)] when Nmax = 2 for the case of a repulsive
condensate where !′ = 10.2, for η/κ = 1.80 (blue crosses), 2.27
(black circles), and 2.84 (red squares). See Fig. 9 for a comparison
with the results of the full model. Quantities are dimensionless.

divergence of the flow

dṘ

dR
+ dİ

dI
+ dḊ

dD
= 0, (16)

as required by conservative dynamical systems. In Fig. 13,
from top to bottom, we show the results of the numeri-
cal integration of Eqs. (13)–(15), with X = −2

√
2NR for

(!′ = 0,η/κ = 1.2), (!′ = 0.4275,η/κ = 1.8), and (!′ =
10.2,η/κ = 2.5). The two-dimensional structure of the invari-
ant manifold is apparent. Note that for all these parameter
values the simulation of the full equations displays chaotic
motion (see Fig. 10). We can then conclude that the three-mode
and two-mode models with initial conditions on the invariant
manifold cannot properly describe the nonlinear interaction of
the BEC with light in an optical cavity.

C. The five-mode model (n = 0, ±1, ±2)

We now consider the dynamics generated by the coupling
of five modes by using Eq. (8) with Nmax = 2. The symmetry

of the system reduces again the total number of coupled
variables in the case of initial conditions satisfying c−1 = c1
and c−2 = c2, since the equations are invariant upon exchange
of the ±1 and ±2 indices. In the five-mode case, however,
it is possible to demonstrate that all phase differences are
coupled with each other, thus leaving a final five-dimensional
system when including the mass-conservation rule. A five-
dimensional nonlinear system can display quasiperiodicity and
chaos.

Figure 14 shows phase-space plots for the five-mode model
with initial conditions satisfying c−1 = c1 and c−2 = c2. There
is excellent agreement between this figure and the correspond-
ing results from the full model (Fig. 5). In particular, we note
a remarkable agreement for η/κ = 1.08, where the system is
close to a separatrix and weakly chaotic motion occurs around
the unstable fixed point at around (X = −4.5,P = 0).

Further evidence of the accuracy of the nonlinear dynamics
of the five-mode model is provided in Figs. 15 and 16, where
the Poincaré sections for values of the parameter ! different
from zero are presented. These figures should be compared,
respectively, with Figs. 8 and 9 obtained by the numerical
integration of the full model.

To complete the comparison between the full and the five-
mode models, we present in Fig. 17 the measurement of the
width of the Poincaré sections performed on the five-mode
model. When compared with similar measurements performed
on the full model and displayed in Fig. 10, we can conclude
that the five-mode model captures well all nonlinear features
of relevance, from the bistable and separatrix behavior to the
quasiperiodic and chaotic dynamics.

VI. CONCLUSION

We have demonstrated that a BEC enclosed in an optical
cavity displays a variety of nonlinear behaviors, including
bistability, regular and quasiperiodic oscillations, and chaotic
dynamics. In particular, we have shown that chaotic os-
cillations are ubiquitous when atom-atom interactions are
considered beyond a critical value of the cavity pumping rate.
Irregular oscillations observed in the light output of the system
can be purely deterministic in nature, arising solely from the
nonlinear nature of the BEC-cavity interaction. In more general
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FIG. 17. (Color online) Measurement of the orbit widths taken from the integration of the five-mode model. In each of the three cases,
the results depict behavior in agreement with that shown for the three values of ! (i.e., 0, 85.5, and 204) given in Fig. 10. Quantities are
dimensionless.
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Conclusions 

ü  Continuous models reproduce the localization process seen in the DNLS. 

ü  Moving from positive T to negative T? (Statistical analysis still missing) 
 
ü  Next. BEC in optical cavities are an interesting mixture of conservative (BEC)     
and dissipative (optical cavity) dynamics 

ü  Conservative chaotic motion is the norm when atom-atom interactions are included 
 
ü  Inclusion of the dynamics of the optical field. Multi-longitudinal optical modes. 
ü  Mass conserved. Energy flow conservative. Anomalous behaviour? 

ü  Longitudinal lattice solitons?  

For more details see: 
M. Diver, G.R.M. Robb and G.-L. O., Phys. Rev. A 89, 033602 (2014)   
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