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Encyclopedia of Complexity and Systems Science (Springer, 2009)

Coarsening -
The monotonic increase of the typical length scale
of a structure in time. [...]
Coarsening slows down if the length scale increases.
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FiG. 1. The coexistence curve (solid line) and classical spinodal curve (dashed line)
are shown schematically for a system such as a binary fluid or binary alloy. Typical
quenches into the metastable (m) and the unstable (u) regions are also shown. In
the former case the system is under-cooled by an amount 87, corresponding to an
initial supersaturation d¢; = ¢; — ca, atatemperature T = T, — AT below the critical
point. .

Fig. 4.2. Coarsening of domain structure following quenches from the disordered
phase region at T = 630°C to the region of two coexisting phases at T = 570°C.
Two concentrations corresponding to off-critical paths (left and right panels) and a
concentration corresponding to a near-critical path (center set of panels) are shown.
Reprinted photo 1 with permission Oki et al. (1977).
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Experiment

Reverse Epitaxy of Ge: Ordered and Faceted Surface Patterns

Xin Ou,] Adrian Kcl!cr,1 Manfred Hclm,]'2 Jiirgen Fassbcndcr,]‘2 and Stefan Facsko'™
!nstitute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,
Bautzner Landstrasse 400, 01328 Dresden, Germany
>Technische Universitit Dresden, 01062 Dresden, Germany
(Reeeived 21 March 2013; published 3 July 2013)

Normal incidence ion irradiation at elevated temperatures, when amorphization is prevented, induces
novel nanoscale patterns of crystalline structures on elemental semiconductors by a reverse epitaxial
growth mechanism: on Ge surfaces irradiation at temperatures above the recrystallization temperature of
250°C leads to self-organized patterns of inverse pyramids. Checkerboard patterns with fourfold
symmetry evolve on the Ge (100) surface, whereas on the Ge (111) surface, isotropic patterns with a
sixfold symmetry emerge. After high-fluence irradiations, these patterns exhibit well-developed facets. A
deterministic nonlinear continuum equation accounting for the effective surface currents due to an Ehrlich-
Schwoebel barrier for diffusing vacancies reproduces remarkably well our experimental observations.

TUAITEY IEWS 0TS

1al use only.

Barchan

Transverse

Sand Ripples and Dunes

ANNLUAL

awews Further

Click here fior quick links to B 1 ety
ol Francois Charru,' Bruno Andreott,-

including: 20 S

« Other articles in this volume and Phl]lppﬁ Claudln

:;EE Su:?nms; articles ]]J!Btiﬂ:ltdc M&:m_iqut des Fluides dt'lr(H.IIDl.Lli::, FfNRS—INP-UT‘Ei — Université de Toulouse,
- Owr comprehensive search 31400 Toulouse, France; email: francois.charm@im . i

*Laboratoire de Physique et Mécanique des Milieux Hésérogines, PAMIMH UMR 7636
ESPCI - CNRS - Université Paris Diderot — Universied Pierre ex Marie Curie, 75005 Paris,
France; email: andreowi@pmmb.espei fr, dandin@pmmb. espd fr

Water Air




Does Anticoarsening exist?

JOURNAL OF APPLIED PHYSICS 114, 144310 (2013)

Tuning Ag/Si(100) island size, shape, and density

Dexin Kong and Jeff Drucker
Anticoarsening and complex dynamics of step bunches on vicinal surfaces during sublimation Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
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Important questions

e When does (anti)coarsening occur?
e \Why does coarsening may stop?
e What is the coarsening exponent, L(t) ~ t"7?

The answers (to the third Q) highlight the importance of

e Conservation laws
e Space dimension and order parameter dimension
e Noise

as shown (for O(n) models) by Bray and Rutenberg...



(Bray&Rutenberg)’'s theory of Phase ordering [PRE 49, R27 (1994)]

Ouby, = —k"(9H/05_p,) HIG = [ d%el(VE)? + (82 - )]

“We consider the time dependence of the energy as the system relaxes
towards its ground state, using the dynamic scaling hypothesis.
We obtain L(t) consistently by comparing the global rate of energy change
to the energy dissipation from the local evolution of the order parameter.”

1
(t tnt)?H




Beyond Bray & Ruthenberg theory:

have not a Lyapunov functional

cannot be described in terms of defects
some models . ) . . .
display interrupted coarsening or anticoarsening

are discrete

Our starting point:

Coarsening as phase instability of periodic steady states.



Our approach: a multiscale analysis to get a phase diffusion equation

If ug(x) is a stationary solution, also ug(xz + ) is solution.
We study phase dynamics assuming that ¢ = ¢(X,T).

Highlights:
e Dynamical infos from static infos
e Systematic derivation of the coarsening exponent, L(t) ~ t"
e Understanding when (and why) coarsening occurs

e Discriminate between perpetual and interrupted coarsening
(and anticoarsening?)

e Applicability to non-potential equations



TDGL (mod A) generalized oiu = B(u) + G(uw)uzs (d=1,2)

CH (mod B) generalized 0yu = —C(u)0zz[B(u)+G(w)uz] (d=1,2)

Crystal growth equation d;h(x,t) = —V- [j(Vh) + V(V?h)] (d=2)
KS conserved Oiu = —0pz[u + vz — (uz)?]

SH generalized diu = " ¢,02"u + P(u)

Oono equation dwu = —0.z[B(u) + uze] — au




For all equations, we have obtained

ory = DOx x

where D = D(u)(x)) encapsulates dynamical properties:

0
o D= 8;4 <0 <= phase instability
q

o |D(L)|~ L%/t = coarsening law L(t)

In some cases, we get the following criterion:

coarsening <— O\ >0
9 94



Special dynamical scenarios in 1d (for generalized TDGL and CH)
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DNLS

H(n,¢) =Y n?2+2%" /mmr1cos(d; — ¢it1)
i i
i
h > 2a? negative temperature region

Simplified (and purely stochastic) DNLS

H("’@:Z”%W



This model produces “breathers’” which coarsen endlessly
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When does coarsening stop?

+99=0  (D(q)=0)

e Coarsening is driven by a free energy, which has a minimum
for a finite domain size: the 1d Ising model or the Oono equation (diblock
copolymers).

e Some additional ingredient introduces a new length scale
(disorder, stirring/shearing of binary fluids).
Coarsening may stop or become extremely slow.



Eckhaus instability

Anticoarsening: the first example

(e (e
A- = O 4+ =
' LS ‘ k_ -~ ﬂ
C‘c: 4
! y
ANTICGop SENIN (= OpNSENIN &

Ou = eu— (14 0ps)u—u>

Phase separation in diblock copolymers S'—

Another (unacknowledged) example /\
_/

O = —Ozz[B(u) + uzz] — au
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Open, general questions

Is there coarsening outside a phase instability? (I think not)

Is there anticoarsening outside a phase instability? (I think yes)

How to determine D for discrete models

Is it possible to determine D from a simulation?

Is there some principle, based on D, driving the dynamics?
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Recent results on a growth equation in 2d

Oh(x,t) = —V - [j(Vh) + V(Vzh)]

j(Vh) = Vh 4+ nonlinear terms w(q) = q° — q*

Cu(100)/Cu (Zuo & Wendelken, PRL 1995) [1000-5000A] Pt(111)/Pt (Th. Michely, K&ln University)



Multiscale approach for the growth equation

Perturbative expansion

hzﬁg—l—sﬁl—l—...

O = ¢ ((8T¢1)8901 + (8T¢2)8g02>

Phase diffusion
equations

Yi = 4dij

and different scales
fast scales | slow scales
t =t T = 4t
r=2x X —=ex
y=1y Y =e¢ey
©; Y = €p;
q;i = V;

- X

q; = qi(X,T) = Vx¢i(X,T)

\

o

oo

> D

afy

V = Vo + eVx

la 82¢Oé

79X 50X, 12 diffusion coefficients
Dig depend on hg

5e 0%Yq and its derivatives




For square and 6-fold patterns:

8211 8211 821
oryy = Di1 + D25 +
X10X1 9X>0X+ 9X10X+
821 821 8211
Ory2 = Doo + D11 +
0X10X1 0X20X» 0X10X5
Their solutions ¢; = 9e?T KX give the stability,
through the dispersion curves: 27 o> = €21 2(K)
For 6-fold patterns, D11 — Doo — =0
Ql(K) <0 QQ(K) = —D11K2




Small amplitude approximation

h(x,t) = aq(t)(e4@+Y) 4 cia(z=y)) 4 c.c.

03 ‘ ‘ w T
3 o A\
-0.3 L L
0 05 q 1

We can determine the amplitude a1 for the steady states and Dq;.

We have evidence of the standard three scenarios:

e Coarsening
e No Coarsening
e Interrupted coarsening
. . daq
according to the sign of o
q



Coarsening exponents

There are two universality classes

Faceting (constant slope m) No faceting (increasing slope m)
m
1 — m ]_ — 2 | =
] (1 -m*) J=108

L(t) ~ t1/3 L(t) ~ t1/4



Faceting No Faceting
Our results (until now)

1 1
3 4
Exact results (specific isotropic currents)

- 1 [Kohn&Yan]
-3 (2003) < 1  [Bo Lij]
1 i — 4  (2006)
3-fold 1 [Watson&Norris]
3 (2006)
Approximate results (and numerics) [Golubovic]
1 1
square — or —
3 1 4 1
others —
3
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