Negative absolute temperatures for mobile particles

Ulrich Schneider

Ludwig-Maximilian Universität München Max-Planck Institut für Quantenoptik

www.quantum-munich.de

Simon Braun Philipp Ronzheimer Michael Schreiber

Sean Hodgman

Immanuel Bloch U.S.

LMU & MPQ München

+Proposal by A. Mosk & A. Rapp, S. Mandt and A. Rosch
+ discussions with A. Rosch, H. Wagner, W. Zwerger, D. Huse, ...

Funding: DARPA (OLE), DFG, EU, Nanosystems Initiative Munich

Bose-Einstein condensate of Potassium ³⁹K atoms

3D optical lattice

Thermal states: Canonical distribution

Negative Temperatures are *hotter* than all positive temperatures

(continuous + monotonously increasing scale: $-\beta = -\frac{1}{k_BT}$)

Energy-Entropy relation

Requirement: Hamiltonian bounded from above: $\frac{E}{N} \leq \epsilon_{max}$

Applicability

a priori, T>0 and T<0 are equally valid</p>

▶ Most Hamiltonians are unbounded from above, e.g. $E_{kin} \propto p^2$ → in practice often only T>0 possible

How to get to negative Temperatures?

Heat, Heat, Heat, ?

Impossible: Above $T = \infty$ entropy decrease again

- \rightarrow Cannot dissipate work in heat anymore
- Quasi-static state change ?
 Impossible: No (class)

Impossible: No (classical) adiabatic path can change sign of T (Landsberg 1959)

Previous work

A Nuclear Spin System at Negative Temperature

E. M. PURCELL AND R. V. POUND Department of Physics, Harvard University, Cambridge, Massachusetts November 1, 1950

PHYSICAL REVIEW

VOLUME 103, NUMBER 1

JULY 1, 1956

Suddenly flipped

sign of external

magnetic field

Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures

NORMAN F. RAMSEY* Harvard University, Cambridge, Massachusetts, and Clarendon Laboratory, Oxford, England (Received March 26, 1956)

PRL 106, 195301 (2011)

PHYSICAL REVIEW LETTERS

week ending 13 MAY 2011

Spin Gradient Demagnetization Cooling of Ultracold Atoms

Patrick Medley,^{*} David M. Weld,[†] Hirokazu Miyake, David E. Pritchard, and Wolfgang Ketterle MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 12 January 2011; revised manuscript received 16 March 2011; published 12 May 2011)

We demonstrate a new cooling method in which a time-varying magnetic field gradient is applied to an ultracold spin mixture. This enables preparation of isolated spin distributions at positive and negative effective spin temperatures of ± 50 pK. The spin system can also be used to cool other degrees of freedom,

Population inversion: Basis of Laser

 steady state but *no equilibrium state*

Optical lattice band structure (1D)

kinetic energy is bounded from above and below

Many-body states at commensurate density

$$H = -\mathbf{J}\sum_{\langle i,j\rangle} a_i^+ a_j + \frac{\mathbf{U}}{2}\sum_i n_i(n_i - 1)$$

Momentum distribution

Energy bounds in Bose Hubbard Model

limited to T > 0

- U tunable via Feshbach resonance in ³⁹K
- V can be inverted due to *blue-detuned* optical lattice

Experimental Sequence

Bose gas at pos. and negative Temperature

Science **339**, 52 (2013)

Kinetic energy distribution

Blue:
$$T_{fit} = 2.7 \frac{J}{k_B}$$

Red: $T_{fit} = -2.2 \frac{J}{k_B}$

Critical temperature in 2D:

• homogeneous, interacting $|T_{RVT}| \approx 1.8 \frac{J}{2}$

$$|I_{BKT}| \sim 1.0 \frac{1}{k_B}$$

trapped, non-interacting

$$|T_c| = 3.4(2) \frac{J}{k_B}$$

Kinetic energy distribution is well fitted by Bose-Einstein distribution. \rightarrow System is (locally) in thermal state.

Lifetime of Negative Temperature state

Negative Temperature at U<0 as stable as positive T at U>0

Science 339, 52 (2013)

Stability?

$$\left. \frac{\partial S}{\partial V} \right|_{E} \geq 0 \qquad \begin{array}{c} \text{Stability criterium} \\ \text{Landau-Lifshitz, Vol5} \end{array} \right.$$

- Container only gives upper limit for volume
- Thermal state = maximum entropy state (for given constraints)

$$dE = T \, dS - p \, dV \qquad dS = \frac{1}{T} \, dE + \frac{p}{T} \, dV \qquad \frac{\partial S}{\partial V} \bigg|_E = \frac{p}{T}$$

 $T > 0 \Rightarrow$ positive pressure

$$T < 0 \Rightarrow$$
 negative pressure

Negative Temperature stabilizes attractive Bose gas →No Bose-Nova

Science **339**, 52 (2013)

Second law

Entropy

In an isolated system, entropy will only increase.

Clausius

Heat does not flow spontaneously from colder to hotter system.

Kelvin-Planck (original)

It is impossible to extract heat from a thermal reservoir and transform it completely into work. Violated 8

Kelvin-Planck (modified)

It is impossible to extract heat from a positive temperature reservoir and transform it completely into work, and

it is impossible to transfer work into heat that is completely inserted into a negative temperature reservoir.

Carnot limit for positive temperatures

Energy-Entropy relation

Carnot limit including negative Temperatures

Carnot limits

Energy and Entropy are globally conserved!

► No violation of thermodynamic laws → No solution to energy problem!

Applications

$$\hat{\rho} = e^{-\frac{\hat{H}}{k_B T}} = e^{-\frac{(-\hat{H})}{k_B(-T)}}$$

Bipartite lattices: (e.g. simple cubic, hexagonal)

$$J \to -J \quad \hat{=} \quad k \to k + Q \quad (Q = (\pi, \pi, \pi)/d)$$

attractive model at *T<0* = *repulsive* model at *T>0*

e.g. simulate attractive SU(3) model with ¹⁷³Yb A. Rapp *PRA* **85**, 043612 (2012)

Non-Bipartite lattices: (e.g. triangular, Kagome)

 \rightarrow New many-body systems

e.g. stabilize Bosons in flat band of Kagome lattice (Stamper-Kurn setup)

Summary

- Bose Gas at negative absolute Temperatures
 realized for U<0, V₀<0
- Thermodynamically stable state with T<0, p<0 → No collapse!
- Enables above unity Carnot efficiency

 $\eta = \frac{\Delta W}{\Delta E_2} > 1$ but **No** perpetuum mobile (E, S still conserved!)

- New many-body systems:
 - e.g. in Kagome lattice, attractive SU(3) in ¹⁷³Yb,

Ulrich Schneider LMU & MPQ Munich

Science **339**, 52 (2013)