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Our System

Bose-Einstein condensate
of Potassium 3K atoms

3D optical lattice



Thermal states: Canonical distribution
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Negative Temperatures are hotter than all positive temperatures
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Energy-Entropy relation
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Requirement: Hamiltonian bounded from above: - < Emax



Applicability

» a priori, T>0 and T<0 are equally valid
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» T>0only » T>0and T<0 » T<0only

» Most Hamiltonians are unbounded from above, e.g. Eyi, % p*
- in practice often only T>0 possible



How to get to negative Temperatures?

» Heat, Heat, Heat, ?
Impossible: Above T = oo entropy decrease again
— Cannot dissipate work in heat anymore

» Quasi-static state change ?
Impossible: No (classical) adiabatic path can change sign of T (Landsberg 1959)

» ,Flip“ the energy axis: " = —f"




Previous work

A Nuclear Spin System at Negative Temperature Suddenly flipped
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Spin Gradient Demagnetization Cooling of Ultracold Atoms
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We demonstrate a new cooling method in which a time-varying magnetic field gradient is applied to an
ultracold spin mixture. This enables preparation of isolated spin distributions at positive and negative
effective spin temperatures of =50 pK. The spin system can also be used to cool other degrees of freedom,

» Population inversion: Basis of Laser
—> steady state but no equilibrium state



Optical lattice band structure (1D)
Vo= 5 E;
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Quasi-momentum #q (7k)

=>» kinetic energy is bounded from above and below



Many-body states at commensurate density

J > U: Superfluid J < U: Mott Insulator
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Energy bounds in Bose Hubbard Model
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» U tunable via Feshbach resonance in 32K

» Vcan be inverted due to blue-detuned optical lattice



Experimental Sequence

Entropy production: Low

Happens mainly outside of Ml
PRL 105, 220405 (2010) fa
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Proposal by:
Allard P. Mosk PRL 95, 040403 (2005)
A. Rapp, S. Mandt and A. Rosch PRL 105, 220405 (2010)
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Bose gases at T>0 and T<0

Lattice Depth

Science 339, 52 (2013)




Bose gas at pos. and negative Temperature

LU V>0

-4J Energy 4J 0 Occup. (a.u.) 1

Science 339, 52 (2013)



Occupation (a.u.)

Kinetic energy distribution
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0.05 Critical temperature in 2D:
' * homogeneous, interacting
0.00 . o0 063335 |Tpkr| = 1-8,(]—3
=4 9 0 2 4 * trapped, non-interacting
Kinetic energy of Bloch wave (J) |ITe| = 3.4(2) kL
B

Kinetic energy distribution is well fitted by Bose-Einstein distribution.

— System is (locally) in thermal state.

Science 339, 52 (2013)



Lifetime of Negative Temperature state
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Negative Temperature at U<Q0 as stable as positive T at U>0
Science 339, 52 (2013)



Stability?

> ()
8V B Landau-Lifshitz, Vol5

» Container only gives upper limit for volume
» Thermal state = maximum entropy state (for given constraints)

! P 95
db =1dS —pdV dS:TdE+TdV Bl

T > 0 = positive pressure
T <0 = negative pressure

Negative Temperature stabilizes attractive Bose gas
=>» No Bose-Nova
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Science 339, 52 (2013)



Second law

» Entropy
In an isolated system, entropy will only increase.

» Clausius
Heat does not flow spontaneously from colder to hotter system.

» Kelvin-Planck (original)
It is impossible to extract heat from a thermal reservoir
and transform it completely into work. Violated ®

» Kelvin-Planck (modified)
It is impossible to extract heat from a positive temperature
reservoir and transform it completely into work,
and
it is impossible to transfer work into heat that is completely
inserted into a negative temperature reservoir. Ok

Ramsey, Physical review (1956)



Carnot limit for positive temperatures

Concentrate on
hot reservoir only: Hot reservoir

Cold reservoir aS T, > 0: 5, E,

= environment
(comes for free)

Cold reservoir
T]_ > 0: Sl’ El

Carnot Efficiency:

AW
AW = AE, — AE; 17=A?S1
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Energy-Entropy relation
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Carnot limit including negative Temperatures

Opposite :
entropy AS Hot reservoir
flow Tz < O: Sz, EZ

Cold reservoir

T]_ > 0: Sl’ El

Carnot Efficiency:

AW Note: No quasi-static process can connect
AW = AE, + AE ) =—2> '
2 ¥ Ak 1 AE, ] T<0 and T>0 =» Carnot-Engine is impossible




Carnot limits

T, >0,T, >0 T, >0,T, <0
Opposite

Hot reservoir entrop AS Hot reservoir

T2 > 0: Sz, E2 flow T2 < 0: SZIEZ

Cold reservoir

Cold reservoir

T1>O: Sl’El
AW
<1 —AW>1
T=aE, = T~ AR,

» Energy and Entropy are globally conserved!
» No violation of thermodynamic laws = No solution to energy problem!



Applications
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» Bipartite lattices: (e.g. simple cubic, hexagonal)

Jo—J = k=k+Q

(Q — (7‘-7 T, W)/d)

attractive model at T<Q = repulsive model at T>0

e.g. simulate attractive SU(3) model with 173Yb
A. Rapp PRA 85, 043612 (2012)

» Non-Bipartite lattices: (e.g. triangular, Kagome)
- New many-body systems

e.g. stabilize Bosons in flat band of Kagome lattice

(Stamper-Kurn setup)



Summary

» Bose Gas at negative absolute Temperatures
- realized for U<0, V,<0

» Thermodynamically stable state with T<O0, p<0
- No collapse!

» Enables above unity Carnot efficiency

AW

n =-—>1 but No perpetuum mobile
AE,

(E, S still conserved!)

» New many-body systems:
- e.g. in Kagome lattice, attractive SU(3) in 173Yb,

Ulrich Schneider LMU & MPQ Munich Science 339, 52 (2013)



